Nested patterns

- We can nest patterns as deep as we want
 - Just like we can nest expressions as deep as we want
 - Often avoids hard-to-read, wordy nested case expressions
- So the full meaning of pattern-matching is to compare a pattern against a value for the "same shape" and bind variables to the "right parts"
 - More precise recursive definition coming after examples

Useful example: zip/unzip 3 lists

```sml
fun zip3 lists = 
case lists of
  ([],[],[]) => []
| (hd1::tl1,hd2::tl2,hd3::tl3) => 
    (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
| _ => raise ListLengthMismatch

fun unzip3 triples = 
case triples of
  [] => ([],[],[])
| (a,b,c)::tl => 
    let val (l1, l2, l3) = unzip3 tl
    in
      (a::l1,b::l2,c::l3)
    end

More examples in .sml files
```

Style

- Nested patterns can lead to very elegant, concise code
 - Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 - Example: unzip3 and nondecreasing
 - A common idiom is matching against a tuple of datatypes to compare them
 - Examples: zip3 and multsign
- Wildcards are good style: use them instead of variables when you do not need the data
 - Examples: len and multsign

(Most of) the full definition

The semantics for pattern-matching takes a pattern \(p \) and a value \(v \) and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If \(p \) is a variable \(x \), the match succeeds and \(x \) is bound to \(v \)
- If \(p \) is \(_ \), the match succeeds and no bindings are introduced
- If \(p \) is \((p1,\ldots,pn) \) and \(v \) is \((v1,\ldots,vn) \), the match succeeds if and only if \(p1 \) matches \(v1 \), ..., \(pn \) matches \(vn \). The bindings are the union of all bindings from the submatches
- If \(p \) is \(C\ p1 \), the match succeeds if \(v \) is \(C\ v1 \) (i.e., the same constructor) and \(p1 \) matches \(v1 \). The bindings are the bindings from the submatch.
- ... (there are several other similar forms of patterns)

Examples

- Pattern \(a::b::c::d \) matches all lists with \(\geq 3 \) elements
- Pattern \(a::b::c::{[]} \) matches all lists with 3 elements
- Pattern \(([a,b],(c,d))::e \) matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```
exception MyUndesirableCondition
exception MyOtherException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```
raise MyUndesirableException
raise (MyOtherException (7,9))
```

A handle expression can handle (a.k.a. catch) an exception
– If doesn’t match, exception continues to propagate

```
e1 handle MyUndesirableException => e2
e1 handle MyOtherException(x,y) => e2
```

Actually...

Exceptions are a lot like datatype constructors...

• Declaring an exception adds a constructor for type `exn`
• Can pass values of `exn` anywhere (e.g., function arguments)
 – Not too common to do this but can be useful
• `handle` can have multiple branches with patterns for type `exn`

Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is 😐)
• Often much easier than a loop
 – When processing a tree (e.g., evaluate an arithmetic expression)
 – Examples like appending lists
 – Avoids mutation even for local variables
• Now:
 – How to reason about efficiency of recursion
 – The importance of tail recursion
 – Using an accumulator to achieve tail recursion
 – [No new language features here]

Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned

– Calling a function f pushes an instance of f on the stack
– When a call to f finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function

Example

```
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3
```

```
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3
```

Example Revised

```
val x = fact 3
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

```
fact3:  aux(3,1):  aux(2,3):  aux(1,6):  aux(0,6)
Etc...
```

An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee’s result and return it without any further evaluation.

ML recognizes these tail calls in the compiler and treats them differently:

- Pop the caller before the call, allowing callee to reuse the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization

What really happens

```
fun fact n =  
    let fun aux(n,acc) =  
        if n=0  
            then acc  
            else aux(n-1,acc*n)  
        in  
            aux(n,1)  
        end  
    in  
        aux(n,1)  
    end

val x = fact 3
```

Moral of tail recursion

- Where reasonably elegant, feasible, and important, rewriting functions to be tail-recursive can be much more efficient
- Tail-recursive: recursive calls are tail-calls
- There is a methodology that can often guide this transformation:
 - Create a helper function that takes an accumulator
 - Old base case becomes initial accumulator
 - New base case becomes final accumulator

Methodology already seen

```
fun fact n =  
    let fun aux(n,acc) =  
        if n=0  
            then acc  
            else aux(n-1,acc*n)  
        in  
            aux(n,1)  
        end  
    in  
        aux(n,1)  
    end

val x = fact 3
```

Another example

```
fun sum xs =  
    case xs of  
        [] => 0  
        | x::xs' => x + sum xs'
```

```
fun sum xs =  
    let fun aux(xs,acc) =  
        case xs of  
            [] => acc  
            | x::xs' => aux(xs',x+acc)  
        in  
            aux(xs,0)  
        end
```

And another

fun rev xs =
case xs of
| [] => []
| x::xs' => (rev xs') @ [x]

fun rev xs =
let fun aux(xs,acc)=
case xs of
| [] => acc
| x::xs' => aux(xs',x::acc)
in
aux(xs,[])
end

Actually much better

fun rev xs =
case xs of
| [] => []
| x::xs' => (rev xs') @ [x]

- For fact and sum, tail-recursion is faster but both ways linear time
- Non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
 - And 1+2+...+(length-1) is almost length*length/2
 - Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better

Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go
 - You could get one recursive call to be a tail call, but rarely worth the complication

Also beware the wrath of premature optimization
 - Favor clear, concise code
 - But do use less space if inputs may be large

What is a tail-call?

The "nothing left for caller to do" intuition usually suffices
 - If the result of f x is the "immediate result" for the enclosing function body, then f x is a tail call

But we can define “tail position” recursively
 - Then a “tail call” is a function call in “tail position”

Precise definition

A tail call is a function call in tail position

- If an expression is not in tail position, then no subexpressions are

- In fun f p = e, the body e is in tail position
- If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (but e1 is not). (Similar for case-expressions)
- If let b1 ... bn in e end is in tail position, then e is in tail position (but no binding expressions are)
- Function-call arguments e1 e2 are not in tail position
- ...