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Review
Huge progress already on the core pieces of ML:
• Types: int bool unit  t1*…*tn t list  t1*…*tn->t

– Types “nest” (each t above can be itself a compound type)
• Variables, environments, and basic expressions
• Functions

– Build:   fun x0 (x1:t1, …, xn:tn) = e
– Use:   e0 (e1, …, en)

• Tuples
– Build:  (e1, …, en)
– Use:   #1 e, #2 e, …

• Lists
– Build:  []  e1::e2
– Use:   null e  hd e  tl e
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Today

• The big thing we need: local bindings
– For style and convenience
– A big but natural idea: nested function bindings
– For efficiency (not “just a little faster”)

• One last feature for Problem 11 of Homework 1: options

• Why not having mutation (assignment statements) is a valuable 
language feature
– No need for you to keep track of sharing/aliasing,           

which Java programmers must obsess about 
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Let-expressions

3 questions:

• Syntax: 
– Each bi is any binding and e is any expression

• Type-checking: Type-check each bi and e in a static 
environment that includes the previous bindings.                                       
Type of  whole let-expression is the type of e.

• Evaluation: Evaluate each bi and e in a dynamic environment 
that includes the previous bindings.  
Result of whole let-expression is result of evaluating e.
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let  b1 b2 … bn in  e  end



It is an expression

A let-expression is just an expression,  so we can use it 
anywhere an expression can go
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Silly examples

silly2 is poor style but shows let-expressions are expressions
– Can also use them in function-call arguments, if branches, etc.
– Also notice shadowing
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fun silly1 (z : int) = 
let val x = if z > 0 then z else 34

val y = x+z+9
in

if x > y then x*2 else y*y
end

fun silly2 () = 
let val x = 1 
in

(let val x = 2 in x+1 end) +
(let val y = x+2 in y+1 end)

end



What’s new

• What’s new is scope: where a binding is in the environment
– In later bindings and body of the let-expression

• (Unless a later or nested binding shadows it)
– Only in later bindings and body of the let-expression

• Nothing else is new: 
– Can put any binding we want, even function bindings
– Type-check and evaluate just like at “top-level”
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Any binding

According to our rules for let-expressions, we can define functions 
inside any let-expression

This is a natural idea, and often good style
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let  b1 b2 … bn in  e  end



(Inferior) Example

• This shows how to use a local function binding, but:
– Better version on next slide
– count might be useful elsewhere

Autumn 2017 9CSE341: Programming Languages

fun countup_from1 (x : int) = 
let fun count (from : int, to : int) =

if from = to
then to :: []
else from :: count(from+1,to)

in
count (1,x)

end



Better:

• Functions can use bindings in the environment where they are 
defined:
– Bindings from “outer” environments

• Such as parameters to the outer function
– Earlier bindings in the let-expression

• Unnecessary parameters are usually bad style
– Like to in previous example
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fun countup_from1_better (x : int) = 
let fun count (from : int) =

if from = x
then x :: []
else from :: count(from+1)

in
count 1

end



Nested functions: style

• Good style to define helper functions inside the functions they 
help if they are:
– Unlikely to be useful elsewhere
– Likely to be misused if available elsewhere
– Likely to be changed or removed later

• A fundamental trade-off in code design: reusing code saves 
effort and avoids bugs, but makes the reused code harder to 
change later
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Avoid repeated recursion
Consider this code and the recursive calls it makes

– Don’t worry about calls to null, hd, and tl because they 
do a small constant amount of work
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fun bad_max (xs : int list) = 
if null xs
then 0 (* horrible style; fix later *)
else if null (tl xs)
then hd xs
else if hd xs > bad_max (tl xs)
then hd xs
else bad_max (tl xs)

let x = bad_max [50,49,…,1]
let y = bad_max [1,2,…,50]



Fast vs. unusable
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bm [50,…]

if hd xs > bad_max (tl xs)
then hd xs
else bad_max (tl xs)

bm [49,…] bm [48,…] bm [1]

bm [1,…] bm [2,…] bm [3,…] bm [50]

…

bm [50]

250

timesbm [2,…]

bm [3,…]

bm [3,…]

bm [3,…]



Math never lies

Suppose one bad_max call’s if-then-else logic and calls to hd, 
null, tl take 10-7 seconds

– Then bad_max [50,49,…,1] takes 50 x 10-7 seconds
– And bad_max [1,2,…,50] takes 1.12 x 108 seconds 

• (over 3.5 years)
• bad_max [1,2,…,55]takes over 1 century
• Buying a faster computer won’t help much 

The key is not to do repeated work that might do repeated work 
that might do…

– Saving recursive results in local bindings is essential…
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Efficient max

Autumn 2017 15CSE341: Programming Languages

fun good_max (xs : int list) = 
if null xs
then 0 (* horrible style; fix later *)
else if null (tl xs)
then hd xs
else 

let val tl_ans = good_max(tl xs)
in

if hd xs > tl_ans
then hd xs
else tl_ans

end



Fast vs. fast
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gm [50,…]

let val tl_ans = good_max(tl xs)
in 

if hd xs > tl_ans
then hd xs
else tl_ans

end

gm [49,…] gm [48,…] gm [1]

gm [1,…] gm [2,…] gm [3,…] gm [50]



Options

• t option is a type for any type t
– (much like t list, but a different type, not a list)

Building:
• NONE has type 'a option (much like [] has type 'a list)
• SOME e has type t option if e has type t (much like e::[])

Accessing:
• isSome has type 'a option -> bool
• valOf has type 'a option -> 'a (exception if given NONE)
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Example
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fun better_max (xs : int list) = 
if null xs
then NONE 
else 

let val tl_ans = better_max(tl xs)
in

if isSome tl_ans
andalso valOf tl_ans > hd xs

then tl_ans
else SOME (hd xs)

end

val better_max = fn : int list -> int option

• Nothing wrong with this, but as a matter of style might prefer not 
to do so much useless “valOf” in the recursion



Example variation
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fun better_max2 (xs : int list) = 
if null xs
then NONE 
else let (* ok to assume xs nonempty b/c local *)

fun max_nonempty (xs : int list) =
if null (tl xs)
then hd xs
else 

let val tl_ans = max_nonempty(tl xs)
in
if hd xs > tl_ans
then hd xs
else tl_ans

end
in

SOME (max_nonempty xs)
end



Cannot tell if you copy

In ML, these two implementations of sort_pair are indistinguishable
– But only because tuples are immutable
– The first is better style: simpler and avoids making a new pair in 

the then-branch
– In languages with mutable compound data, these are different!
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fun sort_pair (pr : int * int) = 
if #1 pr < #2 pr
then pr
else (#2 pr, #1 pr)

fun sort_pair (pr : int * int) = 
if #1 pr < #2 pr
then (#1 pr, #2 pr)
else (#2 pr, #1 pr)



Suppose we had mutation…

• What is z?
– Would depend on how we implemented sort_pair

• Would have to decide carefully and document sort_pair

– But without mutation, we can implement “either way”
• No code can ever distinguish aliasing vs. identical copies
• No need to think about aliasing: focus on other things
• Can use aliasing, which saves space, without danger 
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val x = (3,4)
val y = sort_pair x

somehow mutate #1 x to hold 5

val z = #1 y

x 3 4

y

3 4

?

?



An even better example
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fun append (xs : int list, ys : int list) = 
if null xs
then ys
else hd (xs) :: append (tl(xs), ys)

val x = [2,4]
val y = [5,3,0]
val z = append(x,y)

x

y

z

2 4

5 3 0

2 4

x

y

z

2 4

5 3 0

2 4 5 3 0

or

(can’t tell, 
but it’s the 
first one)



ML vs. Imperative Languages

• In ML, we create aliases all the time without thinking about it 
because it is impossible to tell where there is aliasing
– Example: tl is constant time; does not copy rest of the list
– So don’t worry and focus on your algorithm

• In languages with mutable data (e.g., Java), programmers are 
obsessed with aliasing and object identity
– They have to be (!) so that subsequent assignments affect 

the right parts of the program
– Often crucial to make copies in just the right places

• Consider a Java example…
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Java security nightmare (bad code)
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class ProtectedResource {
private Resource theResource = ...;
private String[] allowedUsers = ...;
public String[] getAllowedUsers() {

return allowedUsers; 
}
public String currentUser() { ... }
public void useTheResource() {

for(int i=0; i < allowedUsers.length; i++) {
if(currentUser().equals(allowedUsers[i])) {

... // access allowed: use it
return;

}
}
throw new IllegalAccessException();

}
}



Have to make copies
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public String[] getAllowedUsers() {
… return a copy of allowedUsers …

}

The fix:

The problem:

p.getAllowedUsers()[0] = p.currentUser();
p.useTheResource();

Reference (alias) vs. copy doesn’t matter if code is immutable!
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