
CSE341: Programming Languages

Lecture 3
Local Bindings;

Options;
Benefits of No Mutation

Dan Grossman
Autumn 2017

Review
Huge progress already on the core pieces of ML:
• Types: int bool unit t1*…*tn t list t1*…*tn->t

– Types “nest” (each t above can be itself a compound type)
• Variables, environments, and basic expressions
• Functions

– Build: fun x0 (x1:t1, …, xn:tn) = e
– Use: e0 (e1, …, en)

• Tuples
– Build: (e1, …, en)
– Use: #1 e, #2 e, …

• Lists
– Build: [] e1::e2
– Use: null e hd e tl e

Autumn 2017 2CSE341: Programming Languages

Today

• The big thing we need: local bindings
– For style and convenience
– A big but natural idea: nested function bindings
– For efficiency (not “just a little faster”)

• One last feature for Problem 11 of Homework 1: options

• Why not having mutation (assignment statements) is a valuable
language feature
– No need for you to keep track of sharing/aliasing,

which Java programmers must obsess about

Autumn 2017 3CSE341: Programming Languages

Let-expressions

3 questions:

• Syntax:
– Each bi is any binding and e is any expression

• Type-checking: Type-check each bi and e in a static
environment that includes the previous bindings.
Type of whole let-expression is the type of e.

• Evaluation: Evaluate each bi and e in a dynamic environment
that includes the previous bindings.
Result of whole let-expression is result of evaluating e.

Autumn 2017 4CSE341: Programming Languages

let b1 b2 … bn in e end

It is an expression

A let-expression is just an expression, so we can use it
anywhere an expression can go

Autumn 2017 5CSE341: Programming Languages

Silly examples

silly2 is poor style but shows let-expressions are expressions
– Can also use them in function-call arguments, if branches, etc.
– Also notice shadowing

Autumn 2017 6CSE341: Programming Languages

fun silly1 (z : int) =
let val x = if z > 0 then z else 34

val y = x+z+9
in

if x > y then x*2 else y*y
end

fun silly2 () =
let val x = 1
in

(let val x = 2 in x+1 end) +
(let val y = x+2 in y+1 end)

end

What’s new

• What’s new is scope: where a binding is in the environment
– In later bindings and body of the let-expression

• (Unless a later or nested binding shadows it)
– Only in later bindings and body of the let-expression

• Nothing else is new:
– Can put any binding we want, even function bindings
– Type-check and evaluate just like at “top-level”

Autumn 2017 7CSE341: Programming Languages

Any binding

According to our rules for let-expressions, we can define functions
inside any let-expression

This is a natural idea, and often good style

Autumn 2017 8CSE341: Programming Languages

let b1 b2 … bn in e end

(Inferior) Example

• This shows how to use a local function binding, but:
– Better version on next slide
– count might be useful elsewhere

Autumn 2017 9CSE341: Programming Languages

fun countup_from1 (x : int) =
let fun count (from : int, to : int) =

if from = to
then to :: []
else from :: count(from+1,to)

in
count (1,x)

end

Better:

• Functions can use bindings in the environment where they are
defined:
– Bindings from “outer” environments

• Such as parameters to the outer function
– Earlier bindings in the let-expression

• Unnecessary parameters are usually bad style
– Like to in previous example

Autumn 2017 10CSE341: Programming Languages

fun countup_from1_better (x : int) =
let fun count (from : int) =

if from = x
then x :: []
else from :: count(from+1)

in
count 1

end

Nested functions: style

• Good style to define helper functions inside the functions they
help if they are:
– Unlikely to be useful elsewhere
– Likely to be misused if available elsewhere
– Likely to be changed or removed later

• A fundamental trade-off in code design: reusing code saves
effort and avoids bugs, but makes the reused code harder to
change later

Autumn 2017 11CSE341: Programming Languages

Avoid repeated recursion
Consider this code and the recursive calls it makes

– Don’t worry about calls to null, hd, and tl because they
do a small constant amount of work

Autumn 2017 12CSE341: Programming Languages

fun bad_max (xs : int list) =
if null xs
then 0 (* horrible style; fix later *)
else if null (tl xs)
then hd xs
else if hd xs > bad_max (tl xs)
then hd xs
else bad_max (tl xs)

let x = bad_max [50,49,…,1]
let y = bad_max [1,2,…,50]

Fast vs. unusable

Autumn 2017 13CSE341: Programming Languages

bm [50,…]

if hd xs > bad_max (tl xs)
then hd xs
else bad_max (tl xs)

bm [49,…] bm [48,…] bm [1]

bm [1,…] bm [2,…] bm [3,…] bm [50]

…

bm [50]

250

timesbm [2,…]

bm [3,…]

bm [3,…]

bm [3,…]

Math never lies

Suppose one bad_max call’s if-then-else logic and calls to hd,
null, tl take 10-7 seconds

– Then bad_max [50,49,…,1] takes 50 x 10-7 seconds
– And bad_max [1,2,…,50] takes 1.12 x 108 seconds

• (over 3.5 years)
• bad_max [1,2,…,55]takes over 1 century
• Buying a faster computer won’t help much 

The key is not to do repeated work that might do repeated work
that might do…

– Saving recursive results in local bindings is essential…

Autumn 2017 14CSE341: Programming Languages

Efficient max

Autumn 2017 15CSE341: Programming Languages

fun good_max (xs : int list) =
if null xs
then 0 (* horrible style; fix later *)
else if null (tl xs)
then hd xs
else

let val tl_ans = good_max(tl xs)
in

if hd xs > tl_ans
then hd xs
else tl_ans

end

Fast vs. fast

Autumn 2017 16CSE341: Programming Languages

gm [50,…]

let val tl_ans = good_max(tl xs)
in

if hd xs > tl_ans
then hd xs
else tl_ans

end

gm [49,…] gm [48,…] gm [1]

gm [1,…] gm [2,…] gm [3,…] gm [50]

Options

• t option is a type for any type t
– (much like t list, but a different type, not a list)

Building:
• NONE has type 'a option (much like [] has type 'a list)
• SOME e has type t option if e has type t (much like e::[])

Accessing:
• isSome has type 'a option -> bool
• valOf has type 'a option -> 'a (exception if given NONE)

Autumn 2017 17CSE341: Programming Languages

Example

Autumn 2017 18CSE341: Programming Languages

fun better_max (xs : int list) =
if null xs
then NONE
else

let val tl_ans = better_max(tl xs)
in

if isSome tl_ans
andalso valOf tl_ans > hd xs

then tl_ans
else SOME (hd xs)

end

val better_max = fn : int list -> int option

• Nothing wrong with this, but as a matter of style might prefer not
to do so much useless “valOf” in the recursion

Example variation

Autumn 2017 19CSE341: Programming Languages

fun better_max2 (xs : int list) =
if null xs
then NONE
else let (* ok to assume xs nonempty b/c local *)

fun max_nonempty (xs : int list) =
if null (tl xs)
then hd xs
else

let val tl_ans = max_nonempty(tl xs)
in
if hd xs > tl_ans
then hd xs
else tl_ans

end
in

SOME (max_nonempty xs)
end

Cannot tell if you copy

In ML, these two implementations of sort_pair are indistinguishable
– But only because tuples are immutable
– The first is better style: simpler and avoids making a new pair in

the then-branch
– In languages with mutable compound data, these are different!

Autumn 2017 20CSE341: Programming Languages

fun sort_pair (pr : int * int) =
if #1 pr < #2 pr
then pr
else (#2 pr, #1 pr)

fun sort_pair (pr : int * int) =
if #1 pr < #2 pr
then (#1 pr, #2 pr)
else (#2 pr, #1 pr)

Suppose we had mutation…

• What is z?
– Would depend on how we implemented sort_pair

• Would have to decide carefully and document sort_pair

– But without mutation, we can implement “either way”
• No code can ever distinguish aliasing vs. identical copies
• No need to think about aliasing: focus on other things
• Can use aliasing, which saves space, without danger

Autumn 2017 21CSE341: Programming Languages

val x = (3,4)
val y = sort_pair x

somehow mutate #1 x to hold 5

val z = #1 y

x 3 4

y

3 4

?

?

An even better example

Autumn 2017 22CSE341: Programming Languages

fun append (xs : int list, ys : int list) =
if null xs
then ys
else hd (xs) :: append (tl(xs), ys)

val x = [2,4]
val y = [5,3,0]
val z = append(x,y)

x

y

z

2 4

5 3 0

2 4

x

y

z

2 4

5 3 0

2 4 5 3 0

or

(can’t tell,
but it’s the
first one)

ML vs. Imperative Languages

• In ML, we create aliases all the time without thinking about it
because it is impossible to tell where there is aliasing
– Example: tl is constant time; does not copy rest of the list
– So don’t worry and focus on your algorithm

• In languages with mutable data (e.g., Java), programmers are
obsessed with aliasing and object identity
– They have to be (!) so that subsequent assignments affect

the right parts of the program
– Often crucial to make copies in just the right places

• Consider a Java example…

Autumn 2017 23CSE341: Programming Languages

Java security nightmare (bad code)

Autumn 2017 24CSE341: Programming Languages

class ProtectedResource {
private Resource theResource = ...;
private String[] allowedUsers = ...;
public String[] getAllowedUsers() {

return allowedUsers;
}
public String currentUser() { ... }
public void useTheResource() {

for(int i=0; i < allowedUsers.length; i++) {
if(currentUser().equals(allowedUsers[i])) {

... // access allowed: use it
return;

}
}
throw new IllegalAccessException();

}
}

Have to make copies

Autumn 2017 25CSE341: Programming Languages

public String[] getAllowedUsers() {
… return a copy of allowedUsers …

}

The fix:

The problem:

p.getAllowedUsers()[0] = p.currentUser();
p.useTheResource();

Reference (alias) vs. copy doesn’t matter if code is immutable!

	CSE341: Programming Languages��Lecture 3�Local Bindings;� Options;� Benefits of No Mutation�
	Review
	Today
	Let-expressions
	It is an expression
	Silly examples
	What’s new
	Any binding
	(Inferior) Example
	Better:
	Nested functions: style
	Avoid repeated recursion
	Fast vs. unusable
	Math never lies
	Efficient max
	Fast vs. fast
	Options
	Example
	Example variation
	Cannot tell if you copy
	Suppose we had mutation…
	An even better example
	ML vs. Imperative Languages
	Java security nightmare (bad code)
	Have to make copies

