Function definitions

Functions: the most important building block in the whole course
- Like Java methods, have arguments and result
- But no classes, this, return, etc.

Example function binding:

\[
\text{fun pow (x : int, y : int) =}
\begin{align*}
\text{if } y = 0 & \text{ then } 1 \\
\text{else } x \times \text{pow}(x,y-1)
\end{align*}
\]

Note: The body includes a (recursive) function call: \(\text{pow}(x,y-1)\)

Some gotchas

Three common “gotchas”
- Bad error messages if you mess up function-argument syntax
- The use of \(*\) in type syntax is not multiplication
 - Example: \(\text{int} \times \text{int} \rightarrow \text{int}\)
 - In expressions, \(*\) is multiplication: \(x \times \text{pow}(x,y-1)\)
- Cannot refer to later function bindings
 - That’s simply ML’s rule
 - Helper functions must come before their uses
 - Need special construct for mutual recursion (later)

Recursion

- If you’re not yet comfortable with recursion, you will be soon ☺
 - Will use for most functions taking or returning lists
- “Makes sense” because calls to same function solve “simpler” problems
- Recursion more powerful than loops
 - We won’t use a single loop in ML
 - Loops often (not always) obscure simple, elegant solutions

Function bindings: 3 questions

- Syntax: \(\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e\)
 - (Will generalize in later lecture)
- Evaluation: A function is a value! (No evaluation yet)
 - Adds \(x_0\) to environment so later expressions can call it
 - (Function-call semantics will also allow recursion)
- Type-checking:
 - Adds binding \(x_0 : (t_1 \times \ldots \times t_n) \rightarrow t\) if:
 - Can type-check body \(e\) to have type \(t\) in the static environment containing:
 - "Enclosing" static environment (earlier bindings)
 - \(x_1 : t_1, \ldots, x_n : t_n\) (arguments with their types)
 - \(x_0 : (t_1 \times \ldots \times t_n) \rightarrow t\) (for recursion)
More on type-checking

- New kind of type: \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)
- Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)
- The type-checker "magically" figures out \(t\) if such a \(t\) exists
- Later lecture: Requires some cleverness due to recursion
- More magic after hw1: Later can omit argument types too

Function Calls

A new kind of expression: 3 questions

Syntax: \(e_0(e_1,\ldots,e_n)\)
 - (Will generalize later)
 - Parentheses optional if there is exactly one argument

Type-checking:
 If:
 - \(e_0\) has some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - \(e_1\) has type \(t_1\), \ldots, \(e_n\) has type \(t_n\)
 Then:
 - \(e_0(e_1,\ldots,e_n)\) has type \(t\)
Example: \(\text{pow}(x,y-1)\) in previous example has type \text{int}

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
 - Now ways to build up data with multiple parts
 - This is essential
 - Java examples: classes with fields, arrays

Now:
 - \(\text{Tuples}\): fixed "number of pieces" that may have different types
 - \(\text{Lists}\): any "number of pieces" that all have the same type
Later:
 - Other more general ways to create compound data

Pairs (2-tuples)

Need a way to \textit{build} pairs and a way to \textit{access} the pieces

Build:
- Syntax: \((e_1,e_2)\)
- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1,v_2)\)
 - A pair of values is a value
- Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type

Access:
- Syntax: \#1 \(e\) and \#2 \(e\)
- Evaluation: Evaluate \(e\) to a pair of values and return first or second piece
 - Example: If \(e\) is a variable \(x\), then look up \(x\) in environment
- Type-checking: If \(e\) has type \(t_a \times t_b\), then \#1 \(e\) has type \(t_a\) and \#2 \(e\) has type \(t_b\)
Examples

Functions can take and return pairs

```ml
fun swap (pr: int*bool) = (#2 pr, #1 pr)
fun sum_two_pairs (pr1: int*int, pr2: int*int) = (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)
fun div_mod (x: int, y: int) = (x div y, x mod y)
fun sort_pair (pr: int*int) =
  if (#1 pr) < (#2 pr)
  then pr
  else (#2 pr, #1 pr)
```

Tuples

Actually, you can have tuples with more than two parts

- A new feature: a generalization of pairs
 - (e1, e2, ..., en)
 - ta * tb * ... * tn
 - #1 e, #2 e, #3 e, ...

Homework 1 uses triples of type int*int*int a lot

Nesting

Pairs and tuples can be nested however you want

- Not a new feature: implied by the syntax and semantics

```ml
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = ((3,5),((4,8),(0,0))) (* (int*int)*((int*int)*(int*int)) *)
```

Lists

- Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list:
 - Can have any number of elements
 - But all list elements have the same type

Need ways to build lists and access the pieces...

Building Lists

- The empty list is a value:
  ```ml
  []
  ```

- In general, a list of values is a value; elements separated by commas:
  ```ml
  [v1,v2,...,vn]
  ```

- If e1 evaluates to v and e2 evaluates to a list [v1,..,vn], then e1::e2 evaluates to [v,...,vn]

  ```ml
  e1::e2 (* pronounced "cons" *)
  ```

Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- null e evaluates to true if and only if e evaluates to []
- If e evaluates to [v1,v2,...,vn] then hd e evaluates to v1
 - (raise exception if e evaluates to [])
- If e evaluates to [v1,v2,...,vn] then tl e evaluates to [v2,..,vn]
 - (raise exception if e evaluates to [])
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \text{ list} \) describes lists where all elements have type \(t \)

- Examples: \(\text{int list} \) \(\text{bool list} \) \(\text{int list list} \) \(\text{(int * int) list} \) \(\text{(int list * int) list} \)

- \(\text{null} \) can have type \(t \text{ list list} \) for any type
- SML uses type 'a list to indicate this ("quote a" or "alpha")
- For \(e_1 :: e_2 \) to type-check, we need a \(t \) such that \(e_1 \) has type \(t \) and \(e_2 \) has type \(t \text{ list} \). Then the result type is \(t \text{ list} \)
 - \(\text{null} : 'a \text{ list} \rightarrow \text{bool} \)
 - \(\text{hd} : 'a \text{ list} \rightarrow 'a \)
 - \(\text{tl} : 'a \text{ list} \rightarrow 'a \text{ list} \)

Example list functions

```haskell
fun sum_list (xs: int list) = 
  if null xs 
  then 0 
  else hd(xs) + sum_list(tl(xs))

fun countdown (x: int) = 
  if x=0 
  then [] 
  else x :: countdown (x-1)

fun append (xs: int list, ys: int list) = 
  if null xs 
  then ys 
  else hd (xs) :: append (tl(xs), ys)
```

Recursion again

Functions over lists are usually recursive
- Only way to "get to all the elements"
- What should the answer be for the empty list?
- What should the answer be for a non-empty list?
 - Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
- You create a list out of smaller lists

Lists of pairs

Processing lists of pairs requires no new features. Examples:

```haskell
fun sum_pair_list (xs: (int*int) list) = 
  if null xs 
  then 0 
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs: (int*int) list) = 
  if null xs 
  then [] 
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs: (int*int) list) = 
  if null xs 
  then [] 
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs: (int*int) list) = 
  (sum_list(firsts xs)) + (sum_list(seconds xs))
```