Function definitions

Functions: the most important building block in the whole course
 – Like Java methods, have arguments and result
 – But no classes, this, return, etc.

Example function binding:

```
(* Note: correct only if y>=0 *)
fun pow (x : int, y : int) =
  if y=0
  then 1
  else x * pow(x,y-1)
```

Note: The body includes a (recursive) function call: pow(x,y-1)
Example, extended

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

fun cube (x : int) =
 pow (x,3)

val sixtyfour = cube 4

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: int * int -> int
 – In expressions, * is multiplication: x * pow(x,y-1)

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

• Syntax: \texttt{fun x0 (x1 : t1, \ldots, xn : tn) = e}
 – (Will generalize in later lecture)

• Evaluation: \textbf{A function is a value!} (No evaluation yet)
 – Adds \texttt{x0} to environment so \textit{later} expressions can \textit{call} it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \texttt{x0 : (t1 * \ldots * tn) \rightarrow t} if:
 – Can type-check body \texttt{e} to have type \texttt{t} in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \texttt{x1 : t1, \ldots, xn : tn} (arguments with their types)
 • \texttt{x0 : (t1 * \ldots * tn) \rightarrow t} (for recursion)
More on type-checking

fun \(x_0 \) (\(x_1 : t_1 \), \ldots, \(x_n : t_n \)) = e

- New kind of type: \((t_1 \ast \ldots \ast t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0 \) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e \) (unsurprising)

- Because evaluation of a call to \(x_0 \) will return result of evaluating \(e \), the return type of \(x_0 \) is the type of \(e \)

- The type-checker “magically” figures out \(t \) if such a \(t \) exists
 - Later lecture: Requires some cleverness due to recursion
 - More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: \texttt{e0 (e1, ..., en)}
 \begin{itemize}
 \item (Will generalize later)
 \item Parentheses optional if there is exactly one argument
 \end{itemize}

Type-checking:

\begin{itemize}
 \item If:
 \begin{itemize}
 \item \texttt{e0} has some type \((t_1 * ... * t_n) -> t\)
 \item \texttt{e1} has type \(t_1\), \(\ldots\), \texttt{en} has type \(t_n\)
 \end{itemize}
 \item Then:
 \begin{itemize}
 \item \texttt{e0 (e1, ..., en)} has type \(t\)
 \end{itemize}
\end{itemize}

Example: \texttt{pow(x, y-1)} in previous example has type \texttt{int}
Function-calls continued

\[e_0(e_1,\ldots,e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0\) to a function
 \[\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e \]
 - Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n\)

3. Result is evaluation of \(e\) in an environment extended to map \(x_1\) to \(v_1\), \(\ldots\), \(x_n\) to \(v_n\)
 - (“An environment” is actually the environment where the function was defined, and includes \(x_0\) for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
– Now ways to build up data with multiple parts
– This is essential
– Java examples: classes with fields, arrays

Now:
– *Tuples*: fixed “number of pieces” that may have different types

Then:
– *Lists*: any “number of pieces” that all have the same type

Later:
– Other more general ways to create compound data
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

- Syntax: \((e_1, e_2)\)

- Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 - A pair of values is a value

- Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a \times t_b\)
 - A new kind of type
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Access:

- Syntax: \(\#1 e \) and \(\#2 e \)

- Evaluation: Evaluate \(e \) to a pair of values and return first or second piece
 - Example: If \(e \) is a variable \(x \), then look up \(x \) in environment

- Type-checking: If \(e \) has type \(ta * tb \), then \(\#1 e \) has type \(ta \) and \(\#2 e \) has type \(tb \)
Examples

Functions can take and return pairs

fun swap (pr : int*bool) =
 (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
 (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
 (x div y, x mod y)

fun sort_pair (pr : int*int) =
 if (#1 pr) < (#2 pr)
 then pr
 else (#2 pr, #1 pr)
Tuples

Actually, you can have *tuples* with more than two parts
 - A new feature: a generalization of pairs

* (e1,e2,...,en)
* ta * tb * ... * tn
* #1 e, #2 e, #3 e, ...

Homework 1 uses triples of type *int* *int* *int* a lot
Nesting

Pairs and tuples can be nested however you want
– Not a new feature: implied by the syntax and semantics

```plaintext
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)   (* bool  *)
val x3 = (#2 x1)      (* bool*int  *)
val x4 = ((3,5),((4,8),(0,0)))
               (* (int*int)*((int*int)*(int*int))  *)
```
Lists

- Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 - Can have any number of elements
 - But all list elements have the same type

Need ways to *build* lists and *access* the pieces…
Building Lists

• The empty list is a value:

 \[
 \[
 \]

• In general, a list of values is a value; elements separated by commas:

 \[v_1, v_2, \ldots, v_n]\n
• If \(e_1\) evaluates to \(v\) and \(e_2\) evaluates to a list \([v_1, \ldots, v_n]\),
 then \(e_1::e_2\) evaluates to \([v, \ldots, v_n]\)

 \(e_1::e_2\) (* pronounced "cons" *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- \texttt{null e} evaluates to \texttt{true} if and only if \texttt{e} evaluates to \texttt{[]}.
- If \texttt{e} evaluates to \texttt{[v_1,v_2,...,v_n]} then \texttt{hd e} evaluates to \texttt{v_1}.
 - (raise exception if \texttt{e} evaluates to \texttt{[]}).
- If \texttt{e} evaluates to \texttt{[v_1,v_2,...,v_n]} then \texttt{tl e} evaluates to \texttt{[v_2,...,v_n]}.
 - (raise exception if \texttt{e} evaluates to \texttt{[]}).
 - Notice result is a list.
Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \) list describes lists where all elements have type \(t \)

- Examples: int list bool list int list list (int * int) list (int list * int) list

- So [] can have type \(t \) list list for any type

- SML uses type 'a list to indicate this ("quote a" or "alpha")

- For \(e1::e2 \) to type-check, we need a \(t \) such that \(e1 \) has type \(t \) and \(e2 \) has type \(t \) list. Then the result type is \(t \) list

- \(\text{null} : \ 'a \) list \(\rightarrow \) bool
- \(\text{hd} \ : \ 'a \) list \(\rightarrow \ 'a \)
- \(\text{tl} \ : \ 'a \) list \(\rightarrow \ 'a \) list
Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd (xs) :: append (tl(xs), ys)
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”
• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```plaintext
fun sum_pair_list (xs : (int*int) list) = 
    if null xs 
    then 0 
    else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
    if null xs 
    then [] 
    else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
    if null xs 
    then [] 
    else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) = 
    (sum_list (firsts xs)) + (sum_list (seconds xs))
```