CSE341: Programming Languages

Lecture 24
Subtyping

Dan Grossman
Autumn 2017
Last major topic: Subtyping

Build up key ideas from first principles
 – In pseudocode because:
 • No time for another language
 • Simpler to first show subtyping without objects

Then:

• How does subtyping relate to types for OOP?
 – Brief sketch only

• What are the relative strengths of subtyping and generics?

• How can subtyping and generics combine synergistically?
A tiny language

- Can cover most core subtyping ideas by just considering *records with mutable fields*

- Will make up our own syntax
 - ML has records, but no subtyping or field-mutation
 - Racket and Ruby have no type system
 - Java uses class/interface names and rarely fits on a slide
Records (half like ML, half like Java)

Record creation (field names and contents):

\{f_1=e_1, f_2=e_2, \ldots, f_n=e_n\}
Evaluate e_i, make a record

Record field access:

\texttt{e.f}
Evaluate e to record v with an f field, get contents of f field

Record field update

\texttt{e_1.f = e_2}
Evaluate e_1 to a record v_1 and e_2 to a value v_2;
Change v_1's f field (which must exist) to v_2;
Return v_2
A Basic Type System

Record types: What fields a record has and type for each field

\[\{ f_1 : t_1, f_2 : t_2, \ldots, f_n : t_n \} \]

Type-checking expressions:

- If \(e_1 \) has type \(t_1, \ldots, e_n \) has type \(t_n \),
 then \(\{ f_1 = e_1, \ldots, f_n = e_n \} \) has type \(\{ f_1 : t_1, \ldots, f_n : t_n \} \)

- If \(e \) has a record type containing \(f : t \),
 then \(e.f \) has type \(t \)

- If \(e_1 \) has a record type containing \(f : t \) and \(e_2 \) has type \(t \),
 then \(e_1.f = e_2 \) has type \(t \)
This is safe

These evaluation rules and typing rules prevent ever trying to access a field of a record that does not exist

Example program that type-checks (in a made-up language):

```plaintext
fun distToOrigin (p:{x:real,y:real}) =
     Math.sqrt(p.x*p.x + p.y*p.y)

val pythag : {x:real,y:real} = {x=3.0, y=4.0}
val five : real = distToOrigin(pythag)
```
Motivating subtyping

But according to our typing rules, this program does not type-check
– It does nothing wrong and seems worth supporting

```haskell
fun distToOrigin (p:{x:real,y:real}) = 
  Math.sqrt(p.x*p.x + p.y*p.y)

val c : {x:real,y:real,color:string} = 
  {x=3.0, y=4.0, color="green"}

val five : real = distToOrigin(c)
```
A good idea: allow extra fields

Natural idea: If an expression has type

\{f_1:t_1, f_2:t_2, \ldots, f_n:t_n\}

Then it can also have a type with some fields removed

This is what we need to type-check these function calls:

```ml
fun distToOrigin \( (p:\{x:real,y:real\}) \) = ... 
fun makePurple \( (p:\{color:string\}) \) = 
  p.color = "purple"

val c :\{x:real,y:real,color:string\} = 
  \{x=3.0, y=4.0, color="green"\}

val _ = distToOrigin(c)
val _ = makePurple(c)
```
Keeping subtyping separate

A programming language already has a lot of typing rules and we do not want to change them

- Example: The type of an actual function argument must equal the type of the function parameter

We can do this by adding “just two things to our language”

- Subtyping: Write \(t_1 <: t_2 \) for \(t_1 \) is a subtype of \(t_2 \)
- One new typing rule that uses subtyping:

 If \(e \) has type \(t_1 \) and \(t_1 <: t_2 \), then \(e \) (also) has type \(t_2 \)

Now all we need to do is define \(t_1 <: t_2 \)
Subtyping is not a matter of opinion

• Misconception: If we are making a new language, we can have whatever typing and subtyping rules we want

• Not if you want to prevent what you claim to prevent [soundness]
 – Here: No accessing record fields that do not exist

• Our typing rules were sound before we added subtyping
 – We should keep it that way

• Principle of substitutability: If $t_1 <: t_2$, then any value of type t_1 must be usable in every way a t_2 is
 – Here: Any value of subtype needs all fields any value of supertype has
Four good rules

For our record types, these rules all meet the substitutability test:

1. “Width” subtyping: A supertype can have a subset of fields with the same types
2. “Permutation” subtyping: A supertype can have the same set of fields with the same types in a different order
3. Transitivity: If $t_1 <: t_2$ and $t_2 <: t_3$, then $t_1 <: t_3$
4. Reflexivity: Every type is a subtype of itself

(4) may seem unnecessary, but it composes well with other rules in a full language and “does no harm”
More record subtyping?

[Warning: I am misleading you 😊]

Subtyping rules so far let us drop fields but not change their types

Example: A circle has a center field holding another record

fun circleY (c:{center:{x:real,y:real}, r:real}) =
 c.center.y
val sphere:{center:{x:real,y:real,z:real}, r:real} =
 {center={x=3.0,y=4.0,z=0.0}, r=1.0}
val _ = circleY(sphere)

For this to type-check, we need:

{center:{x:real,y:real,z:real}, r:real}
 <: {center:{x:real,y:real}, r:real}
Do not have this subtyping – could we?

{center: {x: real, y: real, z: real}, r: real} <:
{center: {x: real, y: real}, r: real}

• No way to get this yet: we can drop center, drop r, or permute order, but cannot “reach into a field type” to do subtyping

• So why not add another subtyping rule... “Depth” subtyping: if ta <: tb, then {f1:t1, ..., f:ta, ..., fn:tn} <:
{f1:t1, ..., f:tb, ..., fn:tn}

• Depth subtyping (along with width on the field's type) lets our example type-check
Stop!

- It is nice and all that our new subtyping rule lets our example type-check

- But it is not worth it if it breaks soundness
 - Also allows programs that can access missing record fields

- Unfortunately, it breaks soundness 😞
Mutation strikes again

\[
\begin{align*}
\text{If } t_a &\leq t_b, \\
\text{then } \{f_1:t_1, \ldots, f:t_a, \ldots, f_n:t_n\} &\leq \{f_1:t_1, \ldots, f:t_b, \ldots, f_n:t_n\}
\end{align*}
\]

```plaintext
fun setToOrigin (c:{center:{x:real,y:real}, r:real})=
    c.center = {x=0.0, y=0.0}

val sphere:{center:{x:real,y:real,z:real}, r:real}=
    {center={x=3.0, y=4.0, z=0.0}, r=1.0}

val _ = setToOrigin(sphere)
val _ = sphere.center.z (* kaboom! (no z field) *)
```
Moral of the story

• In a language with records/objects with getters and setters, depth subtyping is unsound
 – Subtyping cannot change the type of fields

• If fields are immutable, then depth subtyping is sound!
 – Yet another benefit of outlawing mutation!
 – Choose two of three: setters, depth subtyping, soundness

• Remember: subtyping is not a matter of opinion
Picking on Java (and C#)

Arrays should work just like records in terms of depth subtyping
- But in Java, if \(t_1 <: t_2 \), then \(t_1[] <: t_2[] \)
- So this code type-checks, surprisingly

```java
class Point { ... }
class ColorPoint extends Point { ... }
...
void m1(Point[] pt_arr) {
    pt_arr[0] = new Point(3,4);
}
String m2(int x) {
    ColorPoint[] cpt_arr = new ColorPoint[x];
    for(int i=0; i < x; i++)
        cpt_arr[i] = new ColorPoint(0,0,"green");
    m1(cpt_arr); // !
    return cpt_arr[0].color; // !
}
```
Why did they do this?

• More flexible type system allows more programs but prevents fewer errors
 – Seemed especially important before Java/C# had generics

• Good news: despite this “inappropriate” depth subtyping
 – e.color will never fail due to there being no color field
 – Array reads e1[e2] always return a (subtype of) t if e1 is a t[]

• Bad news: to get the good news
 – e1[e2]=e3 can fail even if e1 has type t[] and e3 has type t
 – Array stores check the run-time class of e1's elements and do not allow storing a supertype
 – No type-system help to avoid such bugs / performance cost
So what happens

• Causes code in m1 to throw an `ArrayStoreException`
 – Even though logical error is in m2
 – At least run-time checks occur only on array stores, not on
 field accesses like `c.color`
null

• Array stores probably the most surprising choice for flexibility over static checking

• But null is the most common one in practice
 – null is not an object; it has no fields or methods
 – But Java and C# let it have any object type (backwards, huh?!)
 – So, in fact, we do not have the static guarantee that evaluating e in e.f or e.m(...) produces an object that has an f or m
 – The “or null” caveat leads to run-time checks and errors, as you have surely noticed

• Sometimes null is convenient (like ML's option types)
 – But also having “cannot be null” types would be nice
Now functions

- Already know a caller can use subtyping for arguments passed
 - Or on the result

- More interesting: When is one function type a subtype of another?
 - Important for higher-order functions: If a function expects an argument of type \(t_1 \rightarrow t_2 \), can you pass a \(t_3 \rightarrow t_4 \) instead?
 - Coming next: Important for understanding methods
 - (An object type is a lot like a record type where “method positions” are immutable and have function types)
Example

fun distMoved (f : {x:real,y:real}->{x:real,y:real}, p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x – p.x
 val dy : real = p2.y – p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flip p = {x = ~p.x, y=~p.y}
val d = distMoved(flip, {x=3.0, y=4.0})

No subtyping here yet:
 – flip has exactly the type distMoved expects for f
 – Can pass distMoved a record with extra fields for p, but that's old news
Return-type subtyping

fun distMoved (f : {x:real,y:real} -> {x:real,y:real}, p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x - p.x
 val dy : real = p2.y - p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flipGreen p = {x = ~p.x, y=~p.y, color="green"}
val d = distMoved(flipGreen, {x=3.0, y=4.0})

• Return type of flipGreen is {x:real,y:real,color:string}, but distMoved expects a return type of {x:real,y:real}

• Nothing goes wrong: If ta <: tb, then t -> ta <: t -> tb
 – A function can return “more than it needs to”
 – Jargon: “Return types are covariant”
fun distMoved (f : {x:real,y:real}->{x:real,y:real}, p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x – p.x
 val dy : real = p2.y – p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flipIfGreen p = if p.color = "green" (*kaboom!*)
 then {x = ~p.x, y=~p.y}
 else {x = p.x, y=p.y}

val d = distMoved(flipIfGreen, {x=3.0, y=4.0})

• Argument type of flipIfGreen is
 {x:real,y:real,color:string}, but it is called with a
 {x:real,y:real}

• Unsound! ta <: tb does NOT allow ta->t <: tb->t
The other way works!

fun distMoved (f : {x:real,y:real}->{x:real,y:real}, p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x – p.x
 val dy : real = p2.y – p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flipX_Y0 p = {x = ~p.x, y=0.0}
val d = distMoved(flipX_Y0, {x=3.0, y=4.0})

• Argument type of flipX_Y0 is \{x:real\}, but it is called with a \{x:real,y:real\}, which is fine

• If \(tb <: ta\), then \(ta \rightarrow t <: tb \rightarrow t\)
 – A function can assume “less than it needs to” about arguments
 – Jargon: “Argument types are contravariant”
Can do both

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
 p : {x:real,y:real}) =
 let val p2 : {x:real,y:real} = f p
 val dx : real = p2.x - p.x
 val dy : real = p2.y - p.y
 in Math.sqrt(dx*dx + dy*dy) end

fun flipXMakeGreen p = {x = ~p.x, y=0.0, color="green"}
val d = distMoved(flipXMakeGreen, {x=3.0, y=4.0})

• flipXMakeGreen has type

 \{x:real\} -> \{x:real,y:real,color:string\}

• Fine to pass a function of such a type as function of type

 \{x:real,y:real\} -> \{x:real,y:real\}

• If \(t3 <: t1 \) and \(t2 <: t4 \), then \(t1 -> t2 <: t3 -> t4 \)
Conclusion

• If $t_3 <: t_1$ and $t_2 <: t_4$, then $t_1 \rightarrow t_2 <: t_3 \rightarrow t_4$
 – Function subtyping contravariant in argument(s) and covariant in results

• Also essential for understanding subtyping and methods in OOP

• Most unintuitive concept in the course
 – Smart people often forget and convince themselves covariant arguments are okay
 – These people are always mistaken
 – At times, you or your boss or your friend may do this
 – Remember: A guy with a PhD in PL jumped up and down insisting that function/method subtyping is always contravariant in its argument -- covariant is unsound