
CSE341: Programming Languages

Lecture 1
Course Mechanics

ML Variable Bindings

Dan Grossman
Fall 2017

Welcome!
We have 10 weeks to learn the fundamental concepts of
programming languages

With hard work, patience, and an open mind, this course makes
you a much better programmer

– Even in languages we won’t use
– Learn the core ideas around which every language is built,

despite countless surface-level differences and variations
– Poor course summary: “Uses ML, Racket, and Ruby”

Today’s class:
– Course mechanics
– [A rain-check on motivation]
– Dive into ML: Homework 1 due Friday of next week

Fall 2017 2CSE341: Programming Languages

Concise to-do list

In the next 24-48 hours:

1. Read course web page:
http://courses.cs.washington.edu/courses/cse341/17au/

2. Read all course policies (4 short documents on web page)
3. Adjust class email-list settings as necessary
4. Complete Homework 0 (survey worth 0 points)

5. Get set up using Emacs [optional; recommended] and ML
– Installation/configuration/use instructions on web page
– Essential; non-intellectual

• No reason to delay!

Fall 2017 3CSE341: Programming Languages

Who: Course Staff

Fall 2017 4CSE341: Programming Languages

Dan Grossman: Faculty, 341 my favorite course / area of expertise

Five (!!) great TAs

Get to know us!

Staying in touch

• Course email list: cse341a_au17@u.washington.edu
– Students and staff already subscribed
– You must get announcements sent there
– Fairly low traffic

• Course staff: cse341-staff@cs.washington.edu
plus individual emails

• Message Board
– For appropriate discussions; TAs will monitor
– Optional/encouraged, won’t use for important announcements

• Anonymous feedback link on webpage
– For good and bad: If you don’t tell me, I don’t know

Fall 2017 5CSE341: Programming Languages

Lecture: Dan

• Slides, code, and reading notes / videos posted
– May be revised after class
– Take notes: materials may not describe everything

• Slides in particular are visual aids for me to use

• Ask questions, focus on key ideas

• Engage actively
– Arrive punctually (beginning matters most!) and well-rested

• Just like you will for the midterm!
– Write down ideas and code as we go
– If attending and paying attention is a poor use of your time,

one of us is doing something wrong

Fall 2017 6CSE341: Programming Languages

Section

• Required: will usually cover new material

• Sometimes more language or environment details

• Sometimes main ideas needed for homework

• Will meet this week: using Emacs and ML

Material often also covered in reading notes / videos

Fall 2017 7CSE341: Programming Languages

Reading Notes and Videos

• Posted for each “course unit”
– Go over most (all?) of the material (and some extra stuff?)

• So why come to class?
– Materials let us make class-time much more useful and

interactive
• Answer questions without being rushed because

occasionally “didn’t get to X; read/watch about it”
• Can point to optional topics/videos
• Can try different things in class, not just recite things

• Don’t need other textbooks – I’ve roughly made one myself

Fall 2017 8CSE341: Programming Languages

Office hours

• Regular hours and locations on course web
– Changes as necessary announced on email list

• Use them
– Please visit me
– Ideally not just for homework questions (but that’s good too)

Fall 2017 9CSE341: Programming Languages

Homework

• Seven total

• To be done individually

• Doing the homework involves:
1. Understanding the concepts being addressed
2. Writing code demonstrating understanding of the concepts
3. Testing your code to ensure you understand and have

correct programs
4. “Playing around” with variations, incorrect answers, etc.
Only (2) is graded, but focusing on (2) makes homework harder

• Challenge problems: Low points/difficulty ratio

Fall 2017 10CSE341: Programming Languages

Note my writing style

• Homeworks tend to be worded very precisely and concisely
– I write like a computer scientist (a good thing!)
– Technical issues deserve precise technical writing
– Conciseness values your time as a reader
– You should try to be precise too

• Skimming or not understanding why a word or phrase was
chosen can make the homework harder

• By all means ask if a problem is confusing
– Being confused is normal and understandable
– And I may have made a mistake

Fall 2017 11CSE341: Programming Languages

Academic Integrity

• Read the course policy carefully
– Clearly explains how you can and cannot get/provide help on

homework and projects

• Always explain any unconventional action

• I have promoted and enforced academic integrity since I was a
freshman
– Great trust with little sympathy for violations
– Honest work is the most important feature of a university

• This course especially: Do not web-search for homework
solutions! We will check!

Fall 2017 12CSE341: Programming Languages

Exams

• Midterm: Monday October 30, in class

• Final: Tuesday December 12, 2:30-4:20

• Same concepts, but different format from homework
– More conceptual (but write code too)
– Will post old exams
– Closed book/notes, but you bring one sheet with whatever

you want on it

Fall 2017 13CSE341: Programming Languages

Talk to the professor

• 0.5% of your grade for talking to me in groups of 4-5 for 15-20
minutes

• Will do sign-ups via email / Doodle / Google

Fall 2017 14CSE341: Programming Languages

Coursera (more info in document)

• I’ve taught this material to thousands of people around the world
– A lot of work and extremely rewarding

• You are not allowed to participate in that class!
– Do not web-search related to homework problems!

• This should have little impact on you
– Two courses are separate
– 341 is a great class and staff is committed to this offering

being the best ever

• But this is an exciting thing you are likely curious about…

Fall 2017 15CSE341: Programming Languages

More Coursera

• Why did I do a MOOC?
– Have more impact (like a textbook) for my favorite stuff!
– Experiment with where higher-ed might be going

• So why are you paying tuition?
– Personal attention from humans
– Homeworks/exams with open-ended questions
– Class will adjust as needed
– We can be sure you actually learned
– Course is part of a coherent curriculum
– Beyond the classroom: job fairs, advisors, social, …

Fall 2017 16CSE341: Programming Languages

Has Coursera help/hurt 341?

• Biggest risks
– Becomes easier to cheat – don’t! (And I’ve changed things)
– I become too resistant to change – hope not!

• There are benefits too
– The videos
– More robust grading scripts
– Way fewer typos
– Easier software installation (new SML Mode)
– Taking the “VIP version” of a more well-known course
– Change the world to be more 341-friendly

Fall 2017 17CSE341: Programming Languages

Questions?

Anything I forgot about course mechanics before we discuss, you
know, programming languages?

Fall 2017 18CSE341: Programming Languages

What this course is about

• Many essential concepts relevant in any programming language
– And how these pieces fit together

• Use ML, Racket, and Ruby languages:
– They let many of the concepts “shine”
– Using multiple languages shows how the same concept can

“look different” or actually be slightly different
– In many ways simpler than Java

• Big focus on functional programming
– Not using mutation (assignment statements) (!)
– Using first-class functions (can’t explain that yet)
– But many other topics too

Fall 2017 19CSE341: Programming Languages

Why learn this?

This is the “normal” place for course motivation
– Why learn this material?

But in my experience, we don’t have enough shared vocabulary
– So 3-4 week delay on motivation for functional programming
– I promise full motivation: delay is worth it
– (Will motivate immutable data at end of “Unit 1”)

Fall 2017 20CSE341: Programming Languages

My claim

Learning to think about software in this “PL” way will make you a
better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a
lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

Fall 2017 21CSE341: Programming Languages

A strange environment

• Next 4-5 weeks will use
– ML language
– Emacs editor
– Read-eval-print-loop (REPL) for evaluating programs

• Need to get things installed and configured
– Either in the department labs or your own machine
– We’ve written thorough instructions (questions welcome)

• Only then can you focus on the content of Homework 1

• Working in strange environments is a CSE life skill

Fall 2017 22CSE341: Programming Languages

Mindset

• “Let go” of all programming languages you already know

• For now, treat ML as a “totally new thing”
– Time later to compare/contrast to what you know
– For now, “oh that seems kind of like this thing in [Java]” will

confuse you, slow you down, and you will learn less

• Start from a blank file…

Fall 2017 23CSE341: Programming Languages

A very simple ML program
[The same program we just wrote in Emacs; here for convenience if
reviewing the slides]

Fall 2017 24CSE341: Programming Languages

(* My first ML program *)

val x = 34;

val y = 17;

val z = (x + y) + (y + 2);

val q = z + 1;

val abs_of_z = if z < 0 then 0 – z else z;

val abs_of_z_simpler = abs z

A variable binding

• Syntax:
– Keyword val and punctuation = and ;
– Variable x
– Expression e

• Many forms of these, most containing subexpressions

Fall 2017 25CSE341: Programming Languages

val z = (x + y) + (y + 2); (* comment *)

More generally:

val x = e;

The semantics

• Syntax is just how you write something

• Semantics is what that something means
– Type-checking (before program runs)
– Evaluation (as program runs)

• For variable bindings:
– Type-check expression and extend static environment
– Evaluate expression and extend dynamic environment

So what is the precise syntax, type-checking rules, and evaluation
rules for various expressions? Good question!

Fall 2017 26CSE341: Programming Languages

ML, carefully, so far

• A program is a sequence of bindings

• Type-check each binding in order using the static environment
produced by the previous bindings

• Evaluate each binding in order using the dynamic environment
produced by the previous bindings
– Dynamic environment holds values, the results of evaluating

expressions

• So far, the only kind of binding is a variable binding
– More soon

Fall 2017 27CSE341: Programming Languages

Expressions

• We have seen many kinds of expressions:
34 true false x e1+e2 e1<e2
if e1 then e2 else e3

• Can get arbitrarily large since any subexpression can contain
subsubexpressions, etc.

• Every kind of expression has
1. Syntax
2. Type-checking rules

• Produces a type or fails (with a bad error message )
• Types so far: int bool unit

3. Evaluation rules (used only on things that type-check)
• Produces a value (or exception or infinite-loop)

Fall 2017 28CSE341: Programming Languages

Variables

• Syntax:
sequence of letters, digits, _, not starting with digit

• Type-checking:
Look up type in current static environment

– If not there fail

• Evaluation:
Look up value in current dynamic environment

Fall 2017 29CSE341: Programming Languages

Addition

• Syntax:
e1 + e2 where e1 and e2 are expressions

• Type-checking:
If e1 and e2 have type int,
then e1 + e2 has type int

• Evaluation:
If e1 evaluates to v1 and e2 evaluates to v2,
then e1 + e2 evaluates to sum of v1 and v2

Fall 2017 30CSE341: Programming Languages

Values

• All values are expressions

• Not all expressions are values

• A value “evaluates to itself” in “zero steps”

• Examples:
– 34, 17, 42 have type int
– true, false have type bool
– () has type unit

Fall 2017 31CSE341: Programming Languages

Slightly tougher ones

What are the syntax, typing rules, and evaluation rules for
conditional expressions?

What are the syntax, typing rules, and evaluation rules for
less-than expressions?

Fall 2017 32CSE341: Programming Languages

The foundation we need

We have many more types, expression forms, and binding forms to
learn before we can write “anything interesting”

Syntax, typing rules, evaluation rules will guide us the whole way!

For Homework 1: functions, pairs, conditionals, lists, options, and
local bindings

– Earlier problems require less

Will not add (or need):
– Mutation (a.k.a. assignment): use new bindings instead
– Statements: everything is an expression
– Loops: use recursion instead

Fall 2017 33CSE341: Programming Languages

	CSE341: Programming Languages��Lecture 1�Course Mechanics�ML Variable Bindings
	Welcome!
	Concise to-do list
	Who: Course Staff
	Staying in touch
	Lecture: Dan
	Section
	Reading Notes and Videos
	Office hours
	Homework
	Note my writing style
	Academic Integrity
	Exams
	Talk to the professor
	Coursera (more info in document)
	More Coursera
	Has Coursera help/hurt 341?
	Questions?
	What this course is about
	Why learn this?
	My claim
	A strange environment
	Mindset
	A very simple ML program
	A variable binding
	The semantics
	ML, carefully, so far
	Expressions
	Variables
	Addition
	Values
	Slightly tougher ones
	The foundation we need

