
CSE341: Programming Languages

Lecture 11
Type Inference

Dan Grossman
Autumn 2017

Type-checking

• (Static) type-checking can reject a program before it runs to
prevent the possibility of some errors
– A feature of statically typed languages

• Dynamically typed languages do little (none?) such checking
– So might try to treat a number as a function at run-time

• Will study relative advantages after some Racket
– Racket, Ruby (and Python, Javascript, …) dynamically typed

• ML (and Java, C#, Scala, C, C++) is statically typed
– Every binding has one type, determined “at compile-time”

Autumn 2017 2CSE341: Programming Languages

Implicitly typed
• ML is statically typed
• ML is implicitly typed: rarely need to write down types

• Statically typed: Much more like Java than Javascript!

Autumn 2017 3CSE341: Programming Languages

fun f x = (* infer val f : int -> int *)
if x > 3
then 42
else x * 2

fun g x = (* report type error *)
if x > 3
then true
else x * 2

Type inference

• Type inference problem: Give every binding/expression a type
such that type-checking succeeds
– Fail if and only if no solution exists

• In principle, could be a pass before the type-checker
– But often implemented together

• Type inference can be easy, difficult, or impossible
– Easy: Accept all programs
– Easy: Reject all programs
– Subtle, elegant, and not magic: ML

Autumn 2017 4CSE341: Programming Languages

Overview

• Will describe ML type inference via several examples
– General algorithm is a slightly more advanced topic
– Supporting nested functions also a bit more advanced

• Enough to help you “do type inference in your head”
– And appreciate it is not magic

Autumn 2017 5CSE341: Programming Languages

Key steps

• Determine types of bindings in order
– (Except for mutual recursion)
– So you cannot use later bindings: will not type-check

• For each val or fun binding:
– Analyze definition for all necessary facts (constraints)
– Example: If see x > 0, then x must have type int
– Type error if no way for all facts to hold (over-constrained)

• Afterward, use type variables (e.g., 'a) for any unconstrained types
– Example: An unused argument can have any type

• (Finally, enforce the value restriction, discussed later)

Autumn 2017 6CSE341: Programming Languages

Very simple example

After this example, will go much more step-by-step
– Like the automated algorithm does

Autumn 2017 7CSE341: Programming Languages

val x = 42 (* val x : int *)

fun f (y, z, w) =
if y (* y must be bool *)
then z + x (* z must be int *)
else 0 (* both branches have same type *)

(* f must return an int
f must take a bool * int * ANYTHING
so val f : bool * int * 'a -> int

*)

Relation to Polymorphism

• Central feature of ML type inference: it can infer types with type
variables
– Great for code reuse and understanding functions

• But remember there are two orthogonal concepts
– Languages can have type inference without type variables
– Languages can have type variables without type inference

Autumn 2017 8CSE341: Programming Languages

Key Idea

• Collect all the facts needed for type-checking

• These facts constrain the type of the function

• See code and/or reading notes for:
– Two examples without type variables
– And one example that does not type-check
– Then examples for polymorphic functions

• Nothing changes, just under-constrained: some types
can “be anything” but may still need to be the same as
other types

Autumn 2017 9CSE341: Programming Languages

Material after here is optional,
but is an important part of the full story

Autumn 2017 10CSE341: Programming Languages

Two more topics

• ML type-inference story so far is too lenient
– Value restriction limits where polymorphic types can occur
– See why and then what

• ML is in a “sweet spot”
– Type inference more difficult without polymorphism
– Type inference more difficult with subtyping

Important to “finish the story” but these topics are:
– A bit more advanced
– A bit less elegant
– Will not be on the exam

Autumn 2017 11CSE341: Programming Languages

The Problem

As presented so far, the ML type system is unsound!
– Allows putting a value of type t1 (e.g., int) where we

expect a value of type t2 (e.g., string)

A combination of polymorphism and mutation is to blame:

• Assignment type-checks because (infix) := has type
'a ref * 'a -> unit, so instantiate with string

• Dereference type-checks because ! has type
'a ref -> 'a, so instantiate with int

Autumn 2017 12CSE341: Programming Languages

val r = ref NONE (* val r : 'a option ref *)

val _ = r := SOME "hi"

val i = 1 + valOf (!r)

What to do

To restore soundness, need a stricter type system that rejects at
least one of these three lines

• And cannot make special rules for reference types because
type-checker cannot know the definition of all type synonyms
– Due to module system

Autumn 2017 13CSE341: Programming Languages

val r = ref NONE (* val r : 'a option ref *)

val _ = r := SOME "hi"

val i = 1 + valOf (!r)

type 'a foo = 'a ref
val f = ref (* val f : 'a -> 'a foo *)
val r = f NONE

The fix

• Value restriction: a variable-binding can have a polymorphic
type only if the expression is a variable or value
– Function calls like ref NONE are neither

• Else get a warning and unconstrained types are filled in with
dummy types (basically unusable)

• Not obvious this suffices to make type system sound, but it does

Autumn 2017 14CSE341: Programming Languages

val r = ref NONE (* val r : ?.X1 option ref *)

val _ = r := SOME "hi"

val i = 1 + valOf (!r)

The downside

As we saw previously, the value restriction can cause problems
when it is unnecessary because we are not using mutation

The type-checker does not know List.map is not making a
mutable reference

Saw workarounds in previous segment on partial application
– Common one: wrap in a function binding

Autumn 2017 15CSE341: Programming Languages

val pairWithOne = List.map (fn x => (x,1))
(* does not get type 'a list -> ('a*int) list *)

fun pairWithOne xs = List.map (fn x => (x,1)) xs
(* 'a list -> ('a*int) list *)

A local optimum

• Despite the value restriction, ML type inference is elegant and
fairly easy to understand

• More difficult without polymorpism
– What type should length-of-list have?

• More difficult with subtyping
– Suppose pairs are supertypes of wider tuples
– Then val (y,z) = x constrains x to have at least two

fields, not exactly two fields
– Depending on details, languages can support this, but types

often more difficult to infer and understand

– Will study subtyping later, but not with type inference

Autumn 2017 16CSE341: Programming Languages

	CSE341: Programming Languages��Lecture 11�Type Inference
	Type-checking
	Implicitly typed
	Type inference
	Overview
	Key steps
	Very simple example
	Relation to Polymorphism
	Key Idea
	Slide Number 10
	Two more topics
	The Problem
	What to do
	The fix
	The downside
	A local optimum

