\qquad

CSE341 Spring 2016, Final Examination June 6, 2016

Please do not turn the page until 8:30.

Rules:

- The exam is closed-book, closed-note, etc. except for both sides of one 8.5 x11in piece of paper.
- Please stop promptly at 10:20.
- There are 125 points, distributed unevenly among 9 questions (all with multiple parts):
- The exam is printed double-sided.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what is your final answer.
- The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the questions.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad

1. ($\mathbf{1 6}$ points) (Racket programming) In this problem, the lists we consider have as elements only immutable pairs (built with cons) of numbers or mutable pairs (built with mcons) of numbers. Here are examples of expressions that create such lists:
(list (cons 12 27) (mcons 13 9) (cons 10 15))
(list (cons 1 20) (cons 4 19))
null
(a) Define a Racket function sum-all-pairs that takes a list and returns the sum of all the numbers contained anywhere in it. (The examples above have sums 86, 44, and 0 .)
(b) Define a Racket function negate-lefts that works as follows (pay attention, it is a bit strange):

- It takes a list and returns a new list of the same length.
- If the $i^{\text {th }}$ element of the argument is (cons $x y$), then the $i^{\text {th }}$ element of the result is a new cons cell holding the negation of x and (not-negated, i.e., unchanged) y.
- If the $i^{\text {th }}$ element of the argument is (mcons $x y$), then mutate the pair so that it holds the negation of x in its mcar and use the same pair in the result.
(c) Define a Racket variable part-c such that you would get this behavior in DrRacket's REPL:

```
> part-c
(list (mcons 1 2) '(3 . 4) (mcons 1 2))
> (negate-lefts part-c)
(list (mcons -1 2) '(-3 . 4) (mcons -1 2))
```

(d) Define a Racket variable part-d such that you would get this behavior in DrRacket's REPL:

```
> part-d
(list (mcons 1 2) '(3 . 4) (mcons 1 2))
> (negate-lefts part-d)
(list (mcons 1 2) '(-3 . 4) (mcons 1 2))
```


Solution:

(a) (define (sum-all-pairs xs)
(cond [(null? xs) 0]
[(cons? (car xs)) (+ (car (car xs)) (cdr (car xs)) (sum-all-pairs (cdr xs)))]
[(mpair? (car xs)) (+ (mcar (car xs)) (mcdr (car xs)) (sum-all-pairs (cdr xs)))] [\#t (error "bad list")]))
(b) (define (negate-lefts xs)
(cond [(null? xs) null]
[(cons? (car xs)) (cons (cons (- (car (car xs))) (cdr (car xs)))
(negate-lefts (cdr xs)))]
[(mpair? (car xs)) (begin
(set-mcar! (car xs) (- (mcar (car xs))))
(cons (car xs) (negate-lefts (cdr xs))))]
[\#t (error ("bad list"))]))
(c) (define part-c (list (mcons 1 2) (cons 3 4) (mcons 12)))
(d) (define part-d (let ([x (mcons 1 2)]) (list x (cons 3 4) x)))

Name: \qquad
2. ($\mathbf{1 0}$ points) Consider this (silly) Racket code:

```
(define y 7)
```

(define (f x)
(let ([y 2])
(+ y x)))
(define g
(let* ([x y]
[y (+ x 2)]
[f (lambda (x) (+ y x))])
f))
(define a (f y))
(define b (g y))
(set! y 0)
(define c (f y))
(define d (g y))

After all this code is evaluated:
(a) What is a bound to?
(b) What is b bound to?
(c) What is c bound to?
(d) What is d bound to?

Solution:

(a) 9
(b) 16
(c) 2
(d) 9

Name: \qquad
3. (14 points) (Streams) Remember a stream is a thunk that returns a pair where the cdr is a stream.
(a) Write a Racket function list->sticky-stream that works as follows:

- It takes a list, which you can assume is non-empty.
- If the list has length n, then:
- For $i<n$, the $i^{\text {th }}$ element of the stream is the $i^{\text {th }}$ element of the list (counting from 1).
- For $i \geq n$ the $i^{t h}$ element of the stream is the last element of the list.

Do not use any arithmetic in your solution.
(b) Write a Racket function stream-until-repeat that works as follows:

- It takes a stream and returns a list.
- The list is some prefix of the stream, i.e., if the list has length n, then it contains the first n values produced by the stream in order.
- The list is as long as it can be without any two adjacent elements being equal (as defined by Racket's equal?). That is, the list can have duplicated elements, but not next to each other.

Solution:

(a) There are various solutions; here are three:

```
(define (list->sticky-stream xs)
    (lambda ()
            (if (null? (cdr xs))
                (cons (car xs) (list->sticky-stream xs))
                (cons (car xs) (list->sticky-stream (cdr xs))))))
(define (list->sticky-stream xs)
    (lambda ()
            (cons (car xs) (list->sticky-stream (if (null? (cdr xs)) xs (cdr xs))))))
(define (list->sticky-stream xs)
    (lambda ()
            (if (null? (cdr xs))
                        (letrec ([f (lambda (x) (cons x (lambda () (f x))))])
                        (f (car xs)))
                        (cons (car xs) (list->sticky-stream (cdr xs))))))
```

(b) There are various solutions, but the first element has to be done differently somehow.

```
(define (stream-until-same-as-previous s)
    (letrec ([f (lambda (s prev)
                            (let ([pr (s)])
                            (if (equal? (car pr) prev)
                                    null
                                    (cons (car pr) (f (cdr pr) (car pr))))))])
            (let ([pr (s)])
            (cons (car pr) (f (cdr pr) (car pr))))))
```

Name: \qquad
4. ($\mathbf{1 0}$ points) Each of the Racket expressions below causes an error when evaluated. Give a brief description of what the error is. We won't grade on how similar your wording is to DrRacket's REPL provided you communicate the right idea. For example, if an expression is (cdr null), you could answer, "cdr requires a pair, not an empty list."
(a) $((+34))$
(b) (let $([x 2])(\operatorname{let}([x 3][x(+x 4)]) x))$
(c) (define-syntax hd
(syntax-rules () [(hd x) ((car) (x))]))
(hd (lambda () (cons 7 7)))
(d) (error "this is my special final-exam error")
(e) ((error "this is my special final-exam error"))

Solution:

(a) Tries to call 7 like a procedure with no arguments
(b) Cannot define the same variable twice in a let-expression
(c) car requires one argument but is called with zero arguments
(d) Reports "this my special final-exam error"
(e) Reports "this my special final-exam error" (exact same answer as part (d) - the extra parentheses have no effect here because error never returns)

Name: \qquad
5. ($\mathbf{1 7}$ points) For your reference, here are the Racket structs we used to define MUPL's abstract syntax and the start of eval-under-env.

(a) We want to add a swap expression to MUPL:

```
(struct swap (e) #:transparent)
```

A swap expression evaluates its subexpression. If the result is a MUPL pair value, then swap produces a new pair where the first componenet is the subresult's second component and the second component is the subresult's first component.
Write the case you would add to eval-under-env to implement MUPL swap expressions.
(b) Now suppose we do not add the swap struct or change eval-under-env. Make it "feel like" MUPL has swap expressions by defining a Racket function swap that is a MUPL macro. To avoid unneeded recomputation, assume the expression passed to swap does not use MUPL variable _x.
(c) Here is an incorrect attempt to write a length function in MUPL for MUPL lists:

```
(define mupl-length-wrong
    (fun "f" "x" (ifnz (munit? (var "x"))
    (int 0)
    (add (int 1) (call (var "f") (second (var "x")))))))
```

i. What is wrong with the code above? Describe how to fix the MUPL code so that the Racket variable mupl-length-wrong is bound to a correct MUPL length function.
ii. What would happen when trying to evaluate:
(eval-exp (call mupl-length-wrong (apair (int 86) (munit))))
Briefly explain your answer.

Solution:

See next page.

Name: \qquad
More room, if needed, for your Problem 5 answer.

Solution:

(a) [(swap? e)
(let ([v (eval-under-env (swap-e e) env)]) (if (apair? v)
(apair (apair-e2 v) (apair-e1 v))
(error "MUPL swap applied to non-pair")))]
(b) (define (swap e)
(mlet "_x" e
(apair (second (var "_x")) (first (var "_x")))))
(c) It uses the Racket function munit? to see if the variable x is bound to (munit) when it should use (ismunit (var "x")).
(d) The first subexpression of the ifnz in the function body will be Racket's false, so when eval-exp-under-env is evaluating the function body after doing the call, it will encounter a \#f and will produce an error about a bad MUPL expression.

Name: \qquad
6. ($\mathbf{1 3}$ points) In ML, the hd and tl functions can be used to access list parts (as we did in Homework 1).
(a) What are the types of hd and tı?
(b) Does ML's type system prevent applying hd and tl to a number?
(c) Does ML's type system prevent applying hd and tl to the empty list?
(d) If we changed ML's type system so that hd and tl could be used only on lists of numbers:
i. Would your answer to part (b) change?
ii. Would your answer to part (c) change?
(e) Consider these alternate definitions:

i. What type, if any, would ML give to hd_alt?
ii. What type, if any, would ML give to tl_alt?
iii. Would it be sound (in terms of what ML's type system is designed to prevent) to give hd_alt the type for hd you gave in part (a)?
iv. Would it be sound (in terms of what ML's type system is designed to prevent) to give tl_alt the type for tl you gave in part (a)?

Solution:

(a) hd has type 'a list -> 'a and tl has type 'a list -> 'a list
(b) Yes
(c) No
(d) i. No
ii. No
(e) i. 'a list list -> 'a list (this is admittedly tricky)
ii. 'a list -> 'a list
iii. No
iv. Yes (in fact ML does)

Name: \qquad
7. ($\mathbf{1 4}$ points) Recall Ruby's Enumerable module is a mixin that adds lots of useful functionality to a class by relying on the class' each method. Further recall each takes no regular arguments and a block that takes one argument.
(a) Add to the Enumerable module a method increasing? that takes one regular argument i and does not expect a block. increasing? should return true if the first value produced by each is (strictly) greater than i and each subsequent value produced by each is (strictly) greater than the previous one. Else increasing? should return false. Here are examples (since Array includes Enumerable):

- $[3,7,9]$.increasing? 2 evaluates to true
- $[3,7,9]$. increasing? 4 evaluates to false
- [3, 9,7]. increasing? 2 evaluates to false
(b) Will your part (a) solution cause an error with [x].increasing? 2 if x is bound to an object that is not a number? Answer "always", "sometimes", or "never" and briefly explain your answer.
(c) Add to the Enumerable module a method count_same that takes no regular arguments and expects a block that expects one argument. count_same should return the number of elements produced by each for which the element is equal to (using $==$) the result of passing the element to the block passed to count_same. Here are examples:
- $[1,3,0,4]$.count_same $\{|\mathrm{x}| \mathrm{x} * \mathrm{x}\}$ evaluates to 2 .
- $[1,3,0,4]$.count_same $\{|x| x+1\}$ evaluates to 0 .
- $[1,3,0,4]$.count_same $\{|x| 3\}$ evaluates to 1 .

Solution:

```
(a) module Enumerable
        def increasing? i
            ans = true
            self.each { |x| # each fine in place of self.each
                ans = ans && x > i
                i = x
            }
            ans
        end
    end
```

(b) Sometimes: It can work for any enumerable object whose elements all support the > method when passed an argument of the class of the previous element.
(c) module Enumerable def count_same
ans $=0$
self.each $\{|x|$ ans $+=1$ if $x==\operatorname{yield}(x)\}$ \# each fine in place of self.each ans

end

end

Name: \qquad
8. ($\mathbf{1 4}$ points) This code defines two Ruby classes, including same_size methods that work on any of the 4 combinations of a MyIntList and a MyRange.

```
class MyRange
    def initialize(lo,hi)
        @lo = lo
        @hi = hi
    end
    # ... other methods not shown
    def min
        @lo
    end
    def max
        @hi
    end
    def same_size other
        other.same_size_range self
    end
    def same_size_range other
        other.max - other.min == max - min
    end
    def same_size_list other
            other.length == max - min + 1
    end
end
```

class MyIntList
def initialize (i,r)
@head = i
@rest $=r$
end
\# ... other methods not shown
def length
ef length
if @rest.nil? then 1 else $1+$ @rest.length end
end
def same_size other
other.same_size_list self
end
def same_size_range other
other.max - other.min $+1==$ self.length
end
def same_size_list other
other.length == self.length
end
(a) Complete the ML code below by writing a function same_size : intPile $*$ intPile -> bool to port the Ruby code to ML in a functional style. Use the functions defined below, but do not define any additional helper functions.

```
datatype myIntList = Nil
    | List of int * myIntList
fun length xs =
    case xs of
type myRange = int * int
        Nil => 0
type myRange = int * int 
                                | List(_,xs) => 1 + length xs
                        | R of myRange
fun max (_,hi) = hi
fun min (lo,_) = lo
```

(b) The style of the Ruby code is unnecessarily complicated even if we want a "pure OOP" approach. Give alternate definitions of same_size as follows:

- Do not use is_a?, instance_of?, class, or similar methods.
- Do not use same_size_range or same_size_list.
- Do define a helper method in each class (unless you decide it is unneeded for a class).
- Do redefine same_size in each class.

Solution:

See next page.

Name: \qquad

More room, if needed, for your Problem 8 answer.

Solution:

```
(a) fun same_size (p1,p2) =
    case (p1,p2) of
            (L xs, L ys) => length xs = length ys
            | (L xs, R ys) => length xs = max ys - min ys + 1
            | (R ys, L xs) => length xs = max ys - min ys + 1
            | (R xs, R ys) => max xs - min xs = max ys - min ys
(b) class MyRange
    def size
            max - min + 1
        end
        def same_size2 other
            other.size == self.size
        end
    end
    class MyIntList
        def size
            length
        end
        def same_size2 other
            other.size == self.size
        end
    end
```

Name: \qquad
9. ($\mathbf{1 7}$ points) This problem considers a language like in lecture containing (1) records with mutable fields, (2) higher-order functions, and (3) subtyping. Like in lecture, subtyping for records includes width subtyping and permutation subtyping but not depth subtyping, and subtyping for functions includes contravariant arguments and covariant results. The goal of the type system is to prevent accessing a field of a record that does not exist.

We have these functions defined:

```
fun f1 (x : {foo : int, bar : int}) =
    x.foo = 7;
    x.bar = x.bar + 1
fun f2 (x : {foo : int, bar : int}) =
    {baz = x.bar + x.foo}
fun f3 (x : {foo : {foo : int}, bar : int}) =
    x.foo.foo - 42
fun f4 (g : {foo : int, bar : int} -> {foo : int}) =
    g {foo = 17, bar = 19}
```

(a) Answer one of (A)-(D) below for this expression:
(part i.) f1 \{foo $=19$, bar $=20$, baz $=24\}$
(A) It type-checks and, if run, does not access a record field that does not exist.
(B) It does not type-check and, if run, does not access a record field that does not exist.
(C) It type-checks and, if run, accesses a record field that does not exist.
(D) It does not type-check and, if run, accesses a record field that does not exist.

Repeat the exercise (i.e., answer one of (A)-(D)) for each of these expressions:
ii. f1 (f2 \{foo = 19, bar = 20\})
iii. f2 (f1 \{foo = 19, bar = 20\})
iv. f 3 \{foo $=\{\mathrm{foo}=24$, bar $=25\}$, bar $=26\}$
v. f4 (fn y => \{foo = y.foo, bar = y.bar + y.baz\})
vi. f4 (fn y $=>\{f o o=y . f o o-2\})$
vii. f4 (fn y => \{\}) (* \{\} is a record with zero fields *)
viii. $f 4$ (fn y $=>\{f o o=y . f o o, b a r=y . f o o\})$
(b) Complete the following blanks with "is definitely", "might or might not be", or "is definitely not" where (A)-(D) refer to the statements in part (a).
i. If no expression in a language has answer (B), the type system \qquad sound.
ii. If no expression in a language has answer (C), the type system \qquad sound.
iii. If no expression in a language has answer (D), the type system \qquad sound.

Solution:

(a): (i) A, (ii) D, (iii) D, (iv) B, (v) D, (vi) A, (vii) B, (viii) A (b): (i) might or might not be, (ii) definitely, (iii) might or might not be
Note: announced during the exam to assume $f 1$ returns new value of x .bar, but I meant for f 1 to end with returning x in which case the answer would be A.

Name:

Here are two extra (sides of) pages in case you need them. If you use them for a question, please write "see also extra sheets" or similar on the page with the question.

Name:

Second extra page.

