Name:

CSE341, Spring 2013, Midterm Examination
May 3, 2013

Please do not turn the page until 12:30.

Rules:
e The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.
e Please stop promptly at 1:20.

e You can rip apart the pages, but please staple them back together before you leave.

There are 100 points total, distributed unevenly among 6 questions (all with multiple parts).

e When writing code, style matters, but don’t worry much about indentation.

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.

e The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

If you have questions, ask.

Relax. You are here to learn.



Name:

1. This problem uses this datatype binding for ternary trees, where a ternary tree is a tree where all
non-leaves have exactly three children:

datatype int_ternary_tree = Leaf of int
| Node of int

* int_ternary_tree

* int_ternary_tree

* int_ternary_tree

(a) (8 points) Write an ML function to_list of type int_ternary_tree -> int list. The result
should have every number that appears anywhere in the argument (and no other numbers). If a
number appears n times in the argument, then it also appears n times in the result. The order of
numbers in the result does not matter.

Use no helper functions other than :: and @.
(b) (10 points) Write a second version of to_list that:

e Does not use @ (and not your own reimplementation of it)
e Does use a locally-defined helper function of type int_ternary_tree * int list -> int list
e Does not need to produce a list in the same order as your answer in part (a).

(c) (8 points) Is your answer to part (a) tail-recursive? Explain in 1-2 sentences.

(d) (3 points) Is your answer to part (b) tail-recursive? Explain in 1-2 sentences.



Name:

. This problem uses this ML code:

exception Foo

fun

fun

fun

f1 (xs,ys) =
case (xs,ys) of
(x::01, ) =>x
| (_, z::[1) => z
| (x::y::, ) =>y
| _ => raise Foo
f2 (xs,ys) =
case (xs,ys) of
(x::[1, ) =>x
| (x:i:y::, J) => 5
I (_, z::[0) => z
| _ => raise Foo
£3 (xs,ys) =

case (xs,ys) of
(x::yi:i_, ) =>y
| (_, z::[]) => =z
| (x::00, ) =>x
| _ => raise Foo

(5 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and £1(a,b), £2(a,b), and £3(a,b) all evaluate to 341.

(4 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and £1(a,b) and £2(a,b) evaluate to 341 but £3(a,b) does not.

(4 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and £2(a,b) and £3(a,b) evaluate to 341 but £1(a,b) does not.



Name:

3. For each of the following programs, give the value ans is bound to after evaluation.

(a) (5 points)

fun f x y 2z =1if z > 0 then (fn w => w + x + y) else (fnw => w + x - y)
val a = 1

val b = 2

val c = f b a

val d = ¢ 77

val ans = d 4

(b) (5 points)

fun f p =
let
val x = 3
val y = 4
val (z,w) =p

in
(z (wy)) +x
end
val x = 1
val y = 2
val ans = f((fn z => x + z), (fn x => x + x))

(c¢) (5 points)

fun £f x = x + 7

fun g y =
ify>0
then (f (y-1)) + 1
else 4
and f y = (* notice the keyword and on this line *)
ify>0
then (g (y-1)) + 2
else 5

val ans = f 3



Name:

4. (14 points) This problem uses this ML code:

datatype my_int_list = Empty
| Cons of int * my_int_list

fun foo g a x =
case x of
Empty => a
| Cons(i,x’) => foo g (g(a,i)) x’

(a) By using foo but not using any fun-bindings (you can use val-bindings and anonymous functions),
bind to first_odd a function of type my_int_list -> int that returns the odd number closest
to the beginning (head) of the my_int_list, or 0 if the my_int_list contains no odd numbers.

(b) By using foo but not using any fun-bindings (you can use val-bindings and anonymous functions),
bind to last_odd a function of type my_int_list -> int that returns the odd number closest
to the end of the my_int_list, or O if the my_int_list contains no odd numbers.

If the no-fun-bindings requirement is confusing you, use a fun-binding for some partial credit, but still
use foo as a helper function.



Name:

5. (a) (11 points) Without using any helper functions, write an ML function filter_increasing,
which works as follows:

o It takes three arguments in curried form: (1) a function f that takes list elements and returns
integers, (2) an integer i, and (3) a list xs.

e It returns a list that contains a subset of the elements in xs in the same order they appear
in xs.

e An element of xs is in the output if and only if £ applied to the element produces a number
greater than i and greater than the number produced by £ for all elements earlier (closer to
the head) in the list.

(b) (5 points) What is the type of filter_increasing?



Name:

. (18 points) This problem uses this ML signature definition:

signature S =
sig

type t

(* one more line here as described below *)
end

The comment in the definition above can be replaced by any one of the following:

(x 1 %) val £ int * int -> bool
(* 2 %) val f int -> int -> bool
(* 3 %) val £ : int * ’a -> bool
(x 4 x) val £ : t * t -> bool

(x 5 %) val £ : t * int -> bool

(x 6 x) val £ : t * a -> bool

Now suppose we have a structure definition like this:

structure M :> S =
struct
type t = int
fun f
end

For each different definition of f below, list exactly which types for f listed above would cause the
signature to match, meaning M would type-check with signature S. For example, an answer could be,
“1, 3, and 4”7 where the numbers refer to the numbers in comments above.

(a
(b

) fun £
) f
(¢) fun £ (x,y) =y > 7
) f
) f
) f

(x,y) = x >y andalso y > 3

fun £ (x,y) = x> 7

(d) fun £ (x,y) = if x > y then 34 else 42

e) fun X =x>7

f

fun X true

(
(



