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CSE341, Spring 2013, Midterm Examination
May 3, 2013

Please do not turn the page until 12:30.

Rules:
e The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.
e Please stop promptly at 1:20.

e You can rip apart the pages, but please staple them back together before you leave.

There are 100 points total, distributed unevenly among 6 questions (all with multiple parts).

e When writing code, style matters, but don’t worry much about indentation.

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.

e The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

If you have questions, ask.

Relax. You are here to learn.
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1. This problem uses this datatype binding for ternary trees, where a ternary tree is a tree where all
non-leaves have exactly three children:

datatype int_ternary_tree = Leaf of int
| Node of int

* int_ternary_tree

* int_ternary_tree

* int_ternary_tree

(a) (8 points) Write an ML function to_list of type int_ternary_tree -> int list. The result
should have every number that appears anywhere in the argument (and no other numbers). If a
number appears n times in the argument, then it also appears n times in the result. The order of
numbers in the result does not matter.

Use no helper functions other than :: and @.
(b) (10 points) Write a second version of to_list that:

e Does not use @ (and not your own reimplementation of it)
e Does use a locally-defined helper function of type int_ternary_tree * int list -> int list
e Does not need to produce a list in the same order as your answer in part (a).

(c) (8 points) Is your answer to part (a) tail-recursive? Explain in 1-2 sentences.

(d) (3 points) Is your answer to part (b) tail-recursive? Explain in 1-2 sentences.
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. This problem uses this ML code:

exception Foo

fun

fun

fun

f1 (xs,ys) =
case (xs,ys) of
(x::01, ) =>x
| (_, z::[1) => z
| (x::y::, ) =>y
| _ => raise Foo
f2 (xs,ys) =
case (xs,ys) of
(x::[1, ) =>x
| (x:i:y::, J) => 5
I (_, z::[0) => z
| _ => raise Foo
£3 (xs,ys) =

case (xs,ys) of
(x::yi:i_, ) =>y
| (_, z::[]) => =z
| (x::00, ) =>x
| _ => raise Foo

(5 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and £1(a,b), £2(a,b), and £3(a,b) all evaluate to 341.

(4 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and £1(a,b) and £2(a,b) evaluate to 341 but £3(a,b) does not.

(4 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and £2(a,b) and £3(a,b) evaluate to 341 but £1(a,b) does not.
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3. For each of the following programs, give the value ans is bound to after evaluation.

(a) (5 points)

fun f x y 2z =1if z > 0 then (fn w => w + x + y) else (fnw => w + x - y)
val a = 1

val b = 2

val c = f b a

val d = ¢ 77

val ans = d 4

(b) (5 points)

fun f p =
let
val x = 3
val y = 4
val (z,w) =p

in
(z (wy)) +x
end
val x = 1
val y = 2
val ans = f((fn z => x + z), (fn x => x + x))

(c¢) (5 points)

fun £f x = x + 7

fun g y =
ify>0
then (f (y-1)) + 1
else 4
and f y = (* notice the keyword and on this line *)
ify>0
then (g (y-1)) + 2
else 5

val ans = f 3
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4. (14 points) This problem uses this ML code:

datatype my_int_list = Empty
| Cons of int * my_int_list

fun foo g a x =
case x of
Empty => a
| Cons(i,x’) => foo g (g(a,i)) x’

(a) By using foo but not using any fun-bindings (you can use val-bindings and anonymous functions),
bind to first_odd a function of type my_int_list -> int that returns the odd number closest
to the beginning (head) of the my_int_list, or 0 if the my_int_list contains no odd numbers.

(b) By using foo but not using any fun-bindings (you can use val-bindings and anonymous functions),
bind to last_odd a function of type my_int_list -> int that returns the odd number closest
to the end of the my_int_list, or O if the my_int_list contains no odd numbers.

If the no-fun-bindings requirement is confusing you, use a fun-binding for some partial credit, but still
use foo as a helper function.
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5. (a) (11 points) Without using any helper functions, write an ML function filter_increasing,
which works as follows:

o It takes three arguments in curried form: (1) a function f that takes list elements and returns
integers, (2) an integer i, and (3) a list xs.

e It returns a list that contains a subset of the elements in xs in the same order they appear
in xs.

e An element of xs is in the output if and only if £ applied to the element produces a number
greater than i and greater than the number produced by £ for all elements earlier (closer to
the head) in the list.

(b) (5 points) What is the type of filter_increasing?
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. (18 points) This problem uses this ML signature definition:

signature S =
sig

type t

(* one more line here as described below *)
end

The comment in the definition above can be replaced by any one of the following:

(x 1 %) val £ int * int -> bool
(* 2 %) val f int -> int -> bool
(* 3 %) val £ : int * ’a -> bool
(x 4 x) val £ : t * t -> bool

(x 5 %) val £ : t * int -> bool

(x 6 x) val £ : t * a -> bool

Now suppose we have a structure definition like this:

structure M :> S =
struct
type t = int
fun f
end

For each different definition of f below, list exactly which types for f listed above would cause the
signature to match, meaning M would type-check with signature S. For example, an answer could be,
“1, 3, and 4”7 where the numbers refer to the numbers in comments above.

(a
(b

) fun £
) f
(¢) fun £ (x,y) =y > 7
) f
) f
) f

(x,y) = x >y andalso y > 3

fun £ (x,y) = x> 7

(d) fun £ (x,y) = if x > y then 34 else 42

e) fun X =x>7

f

fun X true

(
(



