
CSE	341
Section	3

Nicholas	Shahan
Spring	2016

Adapted	from	slides	 by	Cody	A.	Schroeder,	and	Dan	Grossman



Today’s	Agenda

• Standard	Library	Documentation	(for	HW3)
• Anonymous	Functions

• “Unnecessary	Function	Wrapping”
• Returning	Functions

• High-Order	Functions
• Map
• Filter
• Fold

• More	Practice
• Tree	example
• Expression	example

2



What	is	in	a	Standard	Library?

• Things	that	you	simply	can’t	implement	on	your	
own.	
• Creating	a	timer,	opening	a	file,	etc.

• Things	that	are	so	common	a	“standardized”	
version	will	save	you	time	and	effort
• List.map,	string	concatenation,	etc.
• A	standard	library	makes	writing	and	reading	code	
easier.
• Common	operations	don’t	have	to	be	implemented,	and	
are	immediately	recognizable.

3



Standard	Library	Documentation

Online	Documentation
• http://www.standardml.org/Basis/index.html

• http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

Helpful	Subset
• Top-Level http://www.standardml.org/Basis/top-level-chapter.html

• List http://www.standardml.org/Basis/list.html

• ListPair http://www.standardml.org/Basis/list-pair.html

• Real	 http://www.standardml.org/Basis/real.html

• String	 http://www.standardml.org/Basis/string.html

4



Anonymous	Functions

• An	expression	that	evaluates	to	a	new	function	
with	no	name
• Usually	used	as	an	argument	or	returned	from	a	
higher-order	function
• Almost	equivalent	to	the	following:

fn pattern => expression

let fun name pattern = expression in name end

• The	difference	is	that	anonymous	functions	cannot	
be	recursive!

5



"Unnecessary	Function	Wrapping"

• When	called	both	functions	will	evaluate	to	the	same	result
• However,	one	creates	an	unnecessary	function	to	wrap	tl
• Compare	to:

fn x => f x fvs.

if e1 then true else false elvs.

Bad	Style:	Lose	Points Good	Style:	Happy	TA	J
if x > 0 then true else false x > 0

n_times((fn ys => tl ys), 3, xs) n_times(tl, 3, xs)

6



Returning	Functions

• Remember	- Functions	are	first-class	values
• We	can	return	them	from	functions

• Example:

• Has	type	(int -> bool) -> (int -> int)
• The	REPL	will	print	(int -> bool) -> int -> int

because	it	never	prints	an	unnecessary	parenthesis

fun double_or_triple f =
if f 7
then fn x => 2 * x
else fn x => 3 * x

7



High-order	Hall	of	Fame
fun map (f, xs) =

case xs of 
[] => []

| x::xs’ => (f x)::(map(f, xs’))

fun filter (f, xs) =
case xs of 
[] => []

| x::xs’ => if f x
then x::(filter(f, xs’))
else filter(f, xs’)

8



Fold

• Fold (synonyms/close	relatives	reduce,	inject,	etc.)	is	
another	very	famous	iterator	over	recursive	structures
• Accumulates	an	answer	by	repeatedly	applying	a	function	f
to	the	answer	so	far
• fold(f, acc,[x1, x2, x3, x4]) computes	
f(f(f(f(acc, x1),x2),x3),x4)

fun fold (f, acc, xs) =
case xs of 

[] => acc
| x::xs’ => fold(f, f(acc, x), xs’)

val fold = fn : ('a * 'b -> 'a) * 'a * 'b list -> 'a

9



Practice	- Tree	Example

(* Generic Binary Tree Type *)

datatype 'a tree = Empty 

| Node of 'a * ' a tree * ' a tree

(* Apply a function to each element in a tree. *)

val tree_map = fn: (' a -> 'b) * 'a tree -> 'b tree

(* Returns true iff the given predicate returns true 
when applied to each element in a tree. *)

val tree_all = fn: (' a -> bool) * 'a tree -> bool

10



Practice	- Expression	Example
(* Modified expression datatype from lecture 5. Now

there are variables. *)

datatype exp = Constant of int
| Negate of exp
| Add of exp * exp
| Multiply of exp * exp
| Var of string

(* Do a post order traversal of the given exp. At each 
node, apply a function f to it and replace the node with 
the result. *)

val visit_post_order = fn : (exp -> exp) * exp -> exp

(* Simplify the root of the expression if possible. *)

val simplify_once = fn : exp -> exp

(* Almost the same as evaluate but leaves variables 
alone. *)

val simplify = fn : exp -> exp

11


