
Name:

CSE341, Winter 2013, Final Examination
March 21, 2013

Please do not turn the page until 8:30.

Rules:

• The exam is closed-book, closed-note, except for both sides of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• You can rip apart the pages, but please staple them back together before you leave.

• There are 100 points total, distributed unevenly among 8 questions (many with multiple parts).

• When writing code, style matters, but do not worry much about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

• If you have questions, ask.

• Relax. You are here to learn.



Name:

1. (13 points) This problem uses these Racket struct definitions to define a form of binary tree:

(struct leaf (data) #:transparent)

(struct node (data left right) #:transparent)

In trees made using these structs, note that:

• Leaves and internal nodes hold data in them. The data might be any Racket value.

• We assume the left and right fields of a value built with node are themselves binary trees.

Write a map function over these binary trees as follows:

• It should take two curried arguments (this is not the Racket default), first a function and second
a tree. (You can get partial credit without currying.)

• It should return a new tree of the same shape as the tree argument but with the function argument
applied to each tree element.



Name:

2. (10 points) This problem considers the difference between

(define foo (lambda (x) (let ([y e1]) e2))) ; Code A

and

(define foo (let ([y e1]) (lambda (x) e2))) ; Code B

Assume e1 does not use x.

(a) In roughly 2–4 English sentences, describe the general difference between “Code A” and “Code
B.”

(b) Give an example e1 and e2 that make Code A and Code B not equivalent. You can provide
additional code before the code above if you wish.



Name:

3. (13 points) Write a Racket function twice-each that takes a stream s and returns a stream. (Re-
member a stream is a thunk that returns a pair where the cdr is a stream.) The stream returned should
be like s except each value generated by s is repeated twice. For example, if s generates 1, 2, 3, 4, ...,
then (twice-each s) generates 1, 1, 2, 2, 3, 3, 4, 4, ...



Name:

4. (15 points) In languages with first-class functions and dynamic scope, we evaluate a function in
the environment where it is called (extended to map the function’s parameter name to the result of
evaluating the function’s argument at the call-site). Dynamic scope is a really bad idea, but it is not
difficult to implement. It is easier to implement than lexical scope because we do not need closures:
we can treat functions as values.

Below is a small language definition and (partial) interpreter for dupl, which is like mupl from our
homework except:

• The language is smaller.

• Functions are not recursive: they are like (lambda (x) e) in Racket or fn x => e in ML.

• Function calls use dynamic scope.

(struct var (string) #:transparent)

(struct int (num) #:transparent)

(struct add (e1 e2) #:transparent)

(struct mylet (var e1 e2) #:transparent)

(struct fun (var body) #:transparent) ; var a Racket string, body a dupl expression

(struct call (e1 e2) #:transparent)

(define (envlookup env str)

(cond [(null? env) (error "unbound variable during evaluation" str)]

[(equal? (car (car env)) str) (cdr (car env))]

[#t (envlookup (cdr env) str)]))

(define (eval-dyn e env)

(cond [(var? e) (envlookup env (var-string e))]

[(int? e) e]

[(fun? e) e]

[(add? e) (let ([v1 (eval-dyn (add-e1 e) env)]

[v2 (eval-dyn (add-e2 e) env)])

(if (and (int? v1) (int? v2))

(int (+ (int-num v1) (int-num v2)))

(error "non-int in addition")))]

[(mylet? e) (eval-dyn (mylet-e2 e)

(cons (cons (mylet-var e)

(eval-dyn (mylet-e1 e) env))

env))]

[(call? e) ; your answer to part (a) would go here

]))

(a) Complete the interpreter by writing the case for call. It should raise an error if the first argument
does not evaluate to a function. Else it should call the function with the result of evaluating the
argument. Use dynamic scope as described above.

(b) Complete this dupl program such that:

• Evaluating it in an empty environment would produce (int 17).

• If we had lexical scope instead, then evaluation in an empty environment would cause an
undefined-variable error.

(mylet "f" _________

(mylet "x" _________

(call _________ _________)))

The next page has room for your solutions.



Name:

Put your solution to the problem on the previous page here.



Name:

5. (12 points) In this problem, we assume the purpose of the Java type system is to prevent “method
missing” errors at run-time.

(a) For this purpose, is Java’s type system sound? Explain briefly, including a definition of soundness.

(b) For this purpose, is Java’s type system complete? Explain briefly, including a definition of com-
pleteness.

(c) Suppose we change the Java type system to disallow writing the constant null. Now is this
revised type system sound? Explain briefly.

(d) Suppose we change the Java type system to disallow writing the constant null. Now is this
revised type system complete? Explain briefly.



Name:

6. (12 points) This problem uses this Ruby code:

class A

def m1

self.m2()

end

def m2

puts "A-m2"

end

end

module M

def m3

self.m4()

end

end

class B < A

def m2

puts "B-m2"

end

end

class C < A

include M

def m4

puts "C-m4"

end

end

class D < B

include M

end

For reach expression below, indicate “error” if evaluation would cause a method-missing error. If not,
indicate what would be printed.

(a) B.new.m1

(b) B.new.m3

(c) C.new.m1

(d) C.new.m3

(e) D.new.m1

(f) D.new.m3



Name:

7. (10 points) Recall the Ruby method is_a? takes a class c as an argument and returns true if and
only if the receiver is an instance of c or a subclass of c. Suppose is_a? was not provided by Ruby.
Give an implementation of is_a? using a recursive helper method and the provided methods class,
superclass, and ==. That is, define the is_a? method. You can assume the argument to is_a? is a
class.



Name:

8. (15 points) In this problem, we consider a language like in lecture containing (1) records with mutable
fields, (2) higher-order functions, and (3) subtyping. Like in class, record subtyping includes width
and permutation but not depth, and function subtyping allows contravariant arguments and covariant
results. We also add type synonyms like in ML: the declaration type t = ... means t is equivalent
to the type ....

For each of the following expressions (mostly just function calls), decide if the expression should type-
check, answering “Yes” if it should type-check and “No” if it should not. If your answer is, “No,” give
a possible implementation of the relevant functions so that the call would try to read a field of a record
that does not exist or try to use addition on a non-number.

In your solutions, use the syntax e.f to read fields and e1.f = e2 to write fields.

type int_pair = { car : int, cdr : int }

type pair_pair = { car : int_pair, cdr : int_pair }

type int_triple = { car : int, cdr : int, cgr : int }

type int_pair_fn = int_pair -> int_pair

val r1 = { cgr=5, cdr=6, car=9 }

val r2 = { car = { car = 1, cdr = 2}, cdr = { car = 3, cdr = 4 } }

val r3 = { car = r1, cdr = { car = 3, cdr = 4 } }

val r4 = { car = 7, cdr = 9}

(* assume these variables are bound to functions with the given type *)

val f1 : int_pair -> int_pair = ...

val f2 : pair_pair -> int_pair = ...

val f3 : int_triple -> int_pair = ...

val f4 : { car : int } -> int_triple = ...

val f5 : int_pair_fn -> int_pair = ...

(a) f1(r1)

(b) f1(r2)

(c) f2(r2) followed by r2.car.cdr

(d) f2(r3) followed by r3.car.cgr

(e) f3(r1)

(f) f3(r4)

(g) f5(f1)

(h) f5(f3)

(i) f5(f4)



Name:

More room for answers if needed.


