
CSE 341 - Programming Languages
Midterm - Winter 2015 - Answer Key

1. (4 points) What is the value of mystery? (If it’s infinite give the first several elements.)

mystery = "squid" : mystery

["squid", "squid", "squid", "squid", "squid"]

2. (10 points) Define a function nodups in Racket that takes a sorted list of numbers and returns a list that is the
same, except with duplicates removed from the list. For example, (nodups ’(1 1 1 1 3 4 4 4 5 5))
evaluates to (1 3 4 5), and (nodups ’()) evaluates to ().

(define (nodups s)
(cond ((null? s) s)

((null? (cdr s)) s)
((= (car s) (cadr s)) (nodups (cdr s)))
(else (cons (car s) (nodups (cdr s))))))

3. (6 points) What is the result of evaluating the following Racket expressions?

(let ((a 1)
(b 10)
(c 20))

(let* ((a 100)
(b a))

(list a b c)))

’(100 100 20)

(let ((n 10))
(letrec ((f (lambda () (+ n 1)))

(n 3))
(f)))

4

4. (8 points) Consider the following Racket program.

(define y 10)

(define (clam)
(+ y 1))

(define (crab y)
(* y (clam)))

(a) What is the result of evaluating (clam)?
11

1

What is the result of evaluating (crab 5)?
55

(b) Suppose Racket used dynamic scoping. What would be the result of evaluating (clam)?
11
What would be the result of evaluating (crab 5)?
30

5. (6 points) Consider the zip, zip3, and uncurry functions from the Haskell Prelude. zip takes two lists and
produces a single list, consisting of pairs of corresponding elements from each list. zip3 does the same thing,
but for three lists. uncurry takes an ordinary curried function with two arguments and turns it into a function
that takes a single argument that is a pair. Finally, let’s define a function gt that is an uncurried version of >.
These are defined as follows:

zip [] _ = []
zip _ [] = []
zip (x:xs) (y:ys) = (x,y) : zip xs ys

zip3 [] _ _ = []
zip3 _ [] _ = []
zip3 _ _ [] = []
zip3 (x:xs) (y:ys) (z:zs) = (x,y,z) : zip3 xs ys zs

uncurry f (x,y) = f x y

gt x = uncurry (>) x

For example, zip [1,2,3] [10,11,12] evaluates to [(1,10), (2,11), (3,12)], and
uncurry (+) (3,4) evaluates to 7.

Circle each type declaration that is a correct type for gt. (Not necessarily the most general type, just a correct
one.)

gt :: a -> b -> Bool NOT CORRECT

gt :: Int a => a -> a -> Bool NOT CORRECT

gt :: Ord a => (a,a) -> Bool CORRECT

gt :: Num a => (a,a) -> Bool NOT CORRECT
(note that Num is not a subclass of Ord)

gt :: Integral a => (a,a) -> Bool CORRECT

Which of the above types, if any, is the most general type for gt?
Ord a => (a,a) -> Bool

6. (5 points) Using the functions defined in Question 5, what is the type of each of the following Haskell expres-
sions? If it has a type error, say that.

2

zip3
[a] -> [b] -> [c] -> [(a, b, c)]

uncurry
(a -> b -> c) -> (a, b) -> c

map gt zip
TYPE ERROR

map gt . zip
TYPE ERROR

map gt . (uncurry zip)
Ord t => ([t], [t]) -> [Bool]

7. (3 points) What is the value of each of these expressions? (They all are correctly typed.) If it is an infinite list,
give at least the first 5 values in the list.

zip [1..] [20..25]
[(1,20),(2,21),(3,22),(4,23),(5,24),(6,25)]

map gt $ zip [1,2,3,4] [3,3,3,3]
[False,False,False,True]

zip3 [1..] [1..] [1..]
[(1,1,1),(2,2,2),(3,3,3),(4,4,4),(5,5,5) ...]

8. (7 points) Convert the following Haskell action into an equivalent one that doesn’t use do.

echo = do
putStr "your input: "
s <- getLine
putStr "you typed "
putStrLn s

echo = putStr "your input: " >> getLine >>= \s -> putStr "you typed " >>
putStrLn s

9. (6 points) Consider the following OCTOPUS program.

(let ((n 100))
(letrec

((f (lambda (m) (+ m n))))
(f (+ n 5))))

(Note: this is corrected from the printed version, by adding the extra parens, as was written on the whiteboard.)

To simplify the answers a little, suppose that the global environment only contains bindings for +, -, and
equal?. (Omit the other functions and constants.) So if the question were “What are the names in the global
environment,” the answer would be +, -, and equal?.

3

(a) What are the names in the environment bound in the closure for the lambda?
n, f, +, -, equal?

(b) What are the names in the environment that OCTOPUS uses when evaluating the body of the function f
when it is called in the above expression?
m, n, f, +, -, equal?

10. (10 points) Write a case for the OCTOPUS eval function to handle or. You can use a helper function if needed.
Your code should have OCTOPUS handle or exactly as in Racket: it can take 0 or more arguments, and does
short-circuit evaluation. Hints: (or #f (+ 10 10) 3 #t) evaluates to 20. Be sure you only evaluate
(+ 10 10) one time. Here is the header for the new case:

eval (OctoList (OctoSymbol "or" : args)) env =

eval (OctoList (OctoSymbol "or" : args)) env = eval_or args env

eval_or [] env = OctoBool False
eval_or (x:xs) env =

if exp1==OctoBool False
then eval_or xs env
else exp1
where exp1 = eval x env

11. (10 points) True or false?

(a) In Racket, the expressions in the body of a delay will be evaluated zero times or one time, but never
more than one time.
True

(b) In the Haskell expression 3+2.8, the 3 is coerced from type Int to type Float.
False – unlike other languages, Haskell doesn’t use coercion.

(c) In Racket, evaluating the expression (cons 3 4) results in an improper list.
True – it’s the list (3 . 4)

(d) Suppose we have a Racket expression that uses let*, without any function definitions. With this restric-
tion, if you replace the let* with letrec, the expression will always evaluate to the same thing.
False. Here’s an example:

(define m 1)
(let* ((n m)

(m 5))
n)

This is correct for let* and evaluates to 1, but in Racket itself gives an error for letrec since m isn’t
defined at the time it is used. (Interestingly, in OCTOPUS it does work, due to the lazy construction of the
environment, and gives a different answer, namely 5. But in any case it doesn’t evaluate to the same thing.)

(e) In Racket, if a and b are both bound to symbols, (equal? a b) and (eq? a b) always evaluate to
the same thing.
True

4

