Lisp:
Good News
Bad News

How to Win Big

Richard P. Gabriel
Lucid, Inc.

January 4, 1994

Abstract

Lisp has done quite well over the last ten years: becoming nearly stan-
dardized, forming the basis of a commercial sector, achieving excellent
performance, having good environments, able to deliver applications. Yet
the Lisp community hasfailed to do aswell asit could have. In this paper |
ook at the successes, the failures, and what to do next.

TheLispworldisingreat shape: Ten yearsago therewas no standard Lisp; the
most standard LispwasInterLisp, whichran on PDP-10'sand X erox Lisp machines
(somesaid it ran on Vaxes, but | think they exaggerated); the second most standard
Lisp was MacLisp, which ran only on PDP-10's, but under the three most popul ar
operating systems for that machine; the third most standard Lisp was Portable
Standard Lisp, which ran on many machines, but very few people wanted to use
it; the fourth most standard Lisp was Zetalisp, which ran on two varieties of Lisp
machine; and thefifth most standard Lisp was Scheme, whichranon afew different
kinds of machine, but very few peoplewanted to useit. By today’s standards, each
of these had poor or just barely acceptable performance, nonexistent or just barely
satisfactory environments, nonexistent or poor integration with other languages
and software, poor portability, poor acceptance, and poor commercia prospects.

Today there is Common Lisp (CL), which runs on al major machines, all
major operating systems, and virtually in every country. Common Lisp is about
to be standardized by ANSI, has good performance, is surrounded with good
environments, and has good integration with other languages and software.

But, asabusiness, Lisp isconsidered to beinill heath. There are persistent—
and sometimes true—rumors about the abandonment of Lisp as a vehicle for
delivery of practical applications.

To some extent the problem is one of perception—there are ssimply better Lisp
delivery solutionsthan are generally believed to exist—and to a disturbing extent
the problem isone of unplaced or misplaced resources, of projects not undertaken,
and of implementation strategies not activated.

Part of the problem stemsfrom our very dear friendsintheartificial intelligence
(Al) business. Al has anumber of good approaches to formalizing human knowl-
edge and problem solving behavior. However, Al does not provide a panacea
in any area of its applicability. Some early promoters of Al to the commercial
world raised expectation levels too high. These expectations had to do with the
effectiveness and deliverability of expert-system-based applications.

When these expectations were not met, some looked for scapegoats, which
frequently were the Lisp companies, particularly when it came to deliverability.
Of course, if the Al companies had any notion about what the market would
eventually expect from delivered Al software, they never shared it with any Lisp
companies | know about. | believe the attitude of the Al companies was that the
Lisp companieswill do what they need to survive, so why share customer lists and
information with them?

Another part of the problem is the relatively bad press Lisp got, sometimes
from very respectable publications. | saw an article in Forbes (October 16, 1989)
entitled “Where Lisp Slipped” by Julie Pitta. However, the article was about
Symbolics and its fortunes. The largest criticisms of Symbolics in the article
are that Symbolics believed Al would take off and that Symbolics mistakenly
pushed its view that proprietary hardware was the way to go for Al. There was
nothing about Lisp in the articleexcept the statement that it isa“ somewhat obscure
programming language used extensively in artificial intelligence.”

It seemsapity for the Lisp businessto take abump partly because Julie thought
she could make a cutetitle for her article out of the name “Lisp”.

But, there are some real successes for Lisp, some problems, and some ways
out of those problems.

1 Lisp’sSuccesses

As | mentioned, Lisp is in better shape today than it ever has been. | want to
review some Lisp success stories.

1.1 Standardization

A major success isthat thereis astandard Lisp—Common Lisp. Many observers
today wish there were a simpler, smaller, cleaner Lisp that could be standardized,
but the Lisp that we have today that is ready for standardization is Common
Lisp. Thisisn't to say that a better Lisp could not be standardized later, and
certainly there should be. Furthermore, like any language, Common Lisp should
be improved and changed as needs change.

Common Lisp started as a grassroots effort in 1981 after an ARPA-sponsored
meeting held at SRI to determine the future of Lisp. At that time there were a
number of Lisps in the US being defined and implemented by former MIT folks:
Greenblatt (LMI), Moon and Weinreb (Symbolics), Fahlman and Steele (CMU),
White (MIT), and Gabriel and Steele (LLNL). The core of the Common Lisp
committee came from this group. That core was Fahlman, Gabriel, Moon, Steele,
and Weinreb, and Common Lisp was a coal escence of the Lisps these people cared
about.

There were other Lisps that could have blended into Common Lisp, but they
were not so clearly in the MacLisp tradition, and their proponents declined to
actively participate in the effort because they predicted success for their own
dialects over any common lisp that was defined by the grassroots effort. Among
these Lisps were Scheme, Interlisp, Franz Lisp, Portable Standard Lisp, and
Lisp370.

And outside the US there were major Lisp efforts, including Cambridge Lisp
and Le-Lisp. The humble US grassroots effort did not seek membership from
outside the US, and one can safely regard that as a mistake. Frankly, it never
occurred to the Common Lisp group that this purely American effort would be
of interest outside the US, because very few of the group saw a futurein Al that
would extend the needs for a standard Lisp beyond North America.

Common Lisp was defined and a book published in 1984 called “Common
Lisp: the Language” (CLtL). And several companies sprang up to put Common
Lisp on stock hardware to compete against the Lisp machine companies. Within

four years, virtually every mgjor computer company had a Common Lisp that it
had either implemented itself or private-labeled from a Common Lisp company.

In 1986, X 3J13 was formed to produce an ANSI version of Common Lisp. By
then it was apparent that there were significant changes required to Common Lisp
to clean up ambiguities and omissions, to add a condition system, and to define
object-oriented extensions.

After severa yearsit became clear that the process of standardization was not
simple, even given amature language with a good definition. The specification of
the Common Lisp Object System (CLOS) alone took nearly two years and seven
of the most talented members of X3J13.

It also became apparent that the interest in international Lisp standardization
wasgrowing. But therewasno heir apparent to Common Lisp. Criticsof Common
Lisp, especialy those outside the US, focused on Common Lisp’s failures as a
practical delivery vehicle.

In 1988, an international working group for the standardization of Lisp was
formed. That group is called WG16. Two things are absolutely clear: The near-
term standard Lisp is Common Lisp; a longer-term standard that goes beyond
Common Lisp isdesirable.

In 1988, the | EEE Scheme working group was formed to producean |EEE and
possibly an ANSI standard for Scheme. This group completed its work in 1990,
and the relatively small and clean Scheme is a standard.

Currently, X3J13 is less than a year away from a draft standard for ANS
Common Lisp; WG16 is stalled because of international bickering; Scheme has
been standardized by IEEE, but it is of limited commercial interest.

Common Lispisinuseinternationally, and servesat least as adefacto standard
until the always contentious Lisp community agrees to work together.

1.2 Good Performance

Common Lisp performs well. Most current implementations use modern com-
piler technology, in contrast to older Lisps, which used very primitive compiler
techniques, even for the time. In terms of performance, anyone using a Com-
mon Lisp today on almost any computer can expect better performance than
could be obtained on single-user PDP-10's or on single-user Lisp machines of
mid-1980's vintage. Many Common Lisp implementations have multitasking and
non-intrusive garbage collection—both regarded as impossible features on stock
hardware ten years ago.

In fact, Common Lisp performs well on benchmarks compared to C. The
following table showstheratio of Lisp time and code sizeto C time and code size

for three benchmarks.
CPU Time | Code Size
Tak 0.90 1.21
Traverse 0.98 1.35
Lexer 1.07 1.48

Tak isa Gabriel benchmark that measures function calling and fixnum arith-
metic. Traverse is a Gabriel benchmark that measures structure creation and
access. Lexer is the tokenizer of a C compiler and measures dispatching and
character manipulation.

These benchmarks were run on a Sun 3 in 1987 using the standard Sun C
compiler using full optimization. TheLispwasnot runninganon-intrusivegarbage
collector.

1.3 Good Environments

It is arguable that modern programming environments come from the Lisp and
Al tradition. The first bitmapped terminals (Stanford/MIT), the mouse pointing
device (SRI), full-screentext editors(Stanford/MIT), and windowed environments
(Xerox PARC) all came from laboratories engaged in Al research. Even today
one can argue that the Symbolics programming environment represents the state
of the art.

Itis aso arguable that the following development environment features origi-
nated in the Lisp world:

¢ Incremental compilation and loading

Symbolic debuggers

Datainspectors

Source code level single stepping

Help on builtin operators

Window-based debugging

e Symbolic stack backtraces
e Structure editors

Today’s Lisp environments are equal to the very best Lisp machine environ-
ments in the 1970’s. Windowing, fancy editing, and good debugging are all
commonplace. In some Lisp systems, significant attention has been paid to the
software lifecycle through the use of source control facilities, automatic cross-
referencing, and automatic testing.

1.4 Good Integration

Today Lisp code can coexist with C, Pascal, Fortran, etc. These languages can be
invoked from Lisp and in general, these languages can then re-invoke Lisp. Such
interfaces allow the programmer to pass Lisp data to foreign code, to pass foreign
datato Lisp code, to manipulate foreign data from Lisp code, to manipulate Lisp
data from foreign code, to dynamically load foreign programs, and to freely mix
foreign and Lisp functions.

Thefacilitiesfor thisfunctionality are quite extensive and provide ameansfor
mixing severa different languages at once.

1.5 Object-oriented Programming

Lisp has the most powerful, comprehensive, and pervasively object-oriented ex-
tensions of any language. CLOS embodies features not found in any other object-
oriented language. These include the following:

e Multiple inheritance
e Generic functionsincluding multi-methods

First-class classes

First-class generic functions

M etacl asses

e Method combination

Initialization protocols

e Metaobject protocol

e Integration with Lisp types

It is likely that Common Lisp (with CLOS) will be the first standardized
object-oriented programming language.

1.6 Delivery

It is possible to deliver applicationswritten in Lisp. The currently available tools
are good but are not yet ideal. These solutions include from removing unused
code and data from application, building up applications using only the code and
dataneeded, and producing . o files from Lisp code.

Delivery tools are commercially provided by Lucid, Franz, and Ibuki.

2 Lisp’sApparent Failures

Too many teardrops for one heart to be crying.
Too many teardrops for one heart to carry on.
You’ re way on top now, since you left me,
Always laughing, way down at me.

? & The Mysterians

This happy story, though, has a sad interlude, an interlude that might be
attributed to the failure of Al to soar, but which probably has some other grains of
truth that we must heed. The key problem with Lisp today stems from the tension
between two opposing software philosophies. The two philosophies are called
“The Right Thing” and “Worse is Better.”

2.1 TheRiseof “WorseisBetter”

| and just about every designer of Common Lisp and CLOS has had extreme
exposure to the MIT/Stanford style of design. The essence of this style can be
captured by the phrase “the right thing.” To such adesigner it isimportant to get
all of the following characteristics right:

e Simplicity—the design must be ssimple, both in implementation and inter-
face. Itismoreimportant for the interface to be smple than the implemen-
tation.

e Correctness—the design must be correct in all observable aspects. Incor-
rectnessis simply not allowed.

¢ Consstency—thedesign must not beinconsistent. A designisallowedto be
dightly less simple and less complete to avoid inconsistency. Consistency
IS as important as correctness.

e Completeness—the design must cover as many important situations as is
practical. All reasonably expected cases must be covered. Simplicity isnot
allowed to overly reduce completeness.

| believe most people would agree that these are good characteristics. | will
call the use of this philosophy of designthe “MIT approach.” Common Lisp (with
CLOS) and Scheme represent the MIT approach to design and implementation.
The worse-is-better philosophy isonly dlightly different:

e Simplicity—the design must be ssimple, both in implementation and inter-
face. It is more important for the implementation to be ssimple than the
interface. Simplicity isthe most important consideration in adesign.

e Correctness—the design must be correct in all observable aspects. It is
dightly better to be ssmple than correct.

e Consstency—the design must not be overly inconsistent. Consistency can
be sacrificed for smplicity in some cases, but it is better to drop those parts
of the design that deal with less common circumstances than to introduce
either implementational complexity or inconsistency.

e Completeness—the design must cover as many important situations as is
practical. All reasonably expected cases should be covered. Completeness
can be sacrificed in favor of any other quality. In fact, compl eteness must
sacrificed whenever implementation smplicity isjeopardized. Consistency
can be sacrificed to achieve completenessif smplicity isretained; especialy
worthlessis consistency of interface.

Early Unix and C are examples of the use of this school of design, and | will
call the use of thisdesign strategy the* New Jersey approach.” | haveintentionally
caricatured the worse-is-better philosophy to convince you that it is obvioudy a
bad philosophy and that the New Jersey approach is a bad approach.

However, | believe that worse-is-better, even in its strawman form, has better
survival characteristics than the-right-thing, and that the New Jersey approach
when used for software is a better approach than the MIT approach.

Let me start out by retelling a story that shows that the MIT/New-Jersey
distinction is valid and that proponents of each philosophy actually believe their
philosophy is better.

Two famous people, one from MIT and another from Berkeley (but working
on Unix) once met to discuss operating system issues. The person from MIT
was knowledgeable about ITS (the MIT Al Lab operating system) and had been
reading the Unix sources. He was interested in how Unix solved the PC loser-ing
problem. The PC loser-ing problem occurs when a user program invokes asystem
routineto perform alengthy operation that might have significant state, such as|O
buffers. If an interrupt occurs during the operation, the state of the user program
must be saved. Because the invocation of the system routine is usually a single
instruction, the PC of the user program does not adequately capture the state of
the process. The system routine must either back out or press forward. The right
thing isto back out and restore the user program PC to the instruction that invoked
the system routine so that resumption of the user program after the interrupt, for
example, re-enters the system routine. It is called “PC loser-ing” because the PC
is being coerced into “loser mode,” where “loser” is the affectionate name for
“user” a MIT.

The MIT guy did not see any code that handled this case and asked the New
Jersey guy how the problem was handled. The New Jersey guy said that the Unix
folks were aware of the problem, but the solution was for the system routine to
always finish, but sometimes an error code would be returned that signaled that
the system routine had failed to completeits action. A correct user program, then,
had to check the error code to determine whether to smply try the system routine
again. The MIT guy did not like this solution because it was not the right thing.

The New Jersey guy said that the Unix solution was right because the design
philosophy of Unix was simplicity and that the right thing was too complex.
Besides, programmers could easily insert this extratest and loop. The MIT guy
pointed out that theimplementation wassimpl e but theinterfaceto thefunctionality
was complex. The New Jersey guy said that the right tradeoff has been selected

9

in Unix—namely, implementation simplicity was more important than interface
simplicity.

The MIT guy then muttered that sometimes it takes a tough man to make a
tender chicken, but the New Jersey guy didn’t understand (I’ mnot surel do either).

Now | want to arguethat worse-is-better isbetter. Cisaprogramminglanguage
designed for writing Unix, and it was designed using the New Jersey approach.
C is therefore a language for which it is easy to write a decent compiler, and it
requires the programmer to write text that is easy for the compiler to interpret.
Some have called C afancy assembly language. Both early Unix and C compilers
had ssimple structures, are easy to port, require few machine resources to run,
and provide about 50%—-80% of what you want from an operating system and
programming language.

Half the computers that exist at any point are worse than median (smaller or
dower). Unix and C work fine on them. The worse-is-better philosophy means
that implementation ssimplicity has highest priority, which means Unix and C are
easy to port on such machines. Therefore, one expectsthat if the 50% functionality
Unix and C support is satisfactory, they will start to appear everywhere. And they
have, haven't they?

Unix and C are the ultimate computer viruses.

A further benefit of the worse-is-better philosophy is that the programmer is
conditioned to sacrifice some safety, convenience, and hassle to get good perfor-
mance and modest resource use. Programswritten using the New Jersey approach
will work well both in small machinesand large ones, and the codewill be portable
because it iswritten on top of avirus.

It is important to remember that the initia virus has to be basically good. If
so, the viral spread is assured aslong as it is portable. Once the virus has spread,
therewill be pressure to improveit, possibly by increasing itsfunctionality closer
to 90%, but users have already been conditioned to accept worse than the right
thing. Therefore, the worse-is-better software first will gain acceptance, second
will condition its users to expect less, and third will be improved to a point that
isamost the right thing. In concrete terms, even though Lisp compilersin 1987
were about as good as C compilers, there are many more compiler experts who
want to make C compilers better than want to make Lisp compilers better.

The good news is that in 1995 we will have a good operating system and
programming language; the bad news is that they will be Unix and C++.

There is a final benefit to worse-is-better. Because a New Jersey language
and system are not really powerful enough to build complex monoalithic software,

10

large systems must be designed to reuse components. Therefore, a tradition of
integration springs up.

How does the right thing stack up? There are two basic scenarios. the “big
complex system scenario” and the “diamond-likejewel” scenario.

The “big complex system” scenario goeslikethis:

Firgt, the right thing needs to be designed. Then its implementation needs
to be designed. Finally it isimplemented. Because it is the right thing, it has
nearly 100% of desired functionality, and implementation simplicity was never a
concern so it takes a long time to implement. It islarge and complex. It requires
complex tools to use properly. The last 20% takes 80% of the effort, and so the
right thing takes a long time to get out, and it only runs satisfactorily on the most
sophisticated hardware.

The “diamond-like jewel” scenario goeslike this:

Theright thing takesforever to design, but it isquite small at every point along
theway. Toimplement it to run fast is either impossible or beyond the capabilities
of most implementors.

The two scenarios correspond to Common Lisp and Scheme.

Thefirst scenarioisaso the scenario for classic artificia intelligence software.

The right thing is frequently a monolithic piece of software, but for no reason
other than that the right thing is often designed monolithically. That is, this
characteristic is a happenstance.

The lesson to be learned from thisis that it is often undesirable to go for the
right thing first. 1t is better to get half of the right thing available so that it spreads
like avirus. Once people are hooked on it, take the time to improve it to 90% of
the right thing.

A wrong lesson is to take the parable literally and to conclude that C is the
right vehicle for Al software. The 50% solution has to be basically right, and in
thiscaseitisn't.

But, one can conclude only that the Lisp community needsto serioudly rethink
itsposition on Lisp design. | will say more about this |ater.

2.2 Good Lisp ProgrammingisHard

Many Lisp enthusiasts believe that Lisp programming is easy. Thisis true up to
apoint. When rea applications need to be delivered, the code needs to perform
well. With C, programming is aways difficult because the compiler requires
so much description and there are so few data types. In Lisp it is very easy to

11

write programs that perform very poorly; in C it is amost impossible to do that.
The following examples of badly performing Lisp programs were al written by
competent Lisp programmers while writing real applications that were intended
for deployment. | find these quite sad.

2.2.1 Bad Declarations

This example is a mistake that is easy to make. The programmer here did not
declare his arrays as fully as he could have. Therefore, each array access was
about as dow as afunction call when it should have been afew instructions. The
original declaration was as follows:

(proclaim’ (type (array fixnum*) *arl* *ar2* *ar3*))

The three arrays happen to be of fixed size, which is reflected in the following
correct declaration:

(proclaim’ (type (sinple-array fixnum (4)) *arl*))
(proclaim’ (type (sinple-array fixnum (4 4)) *ar2*))
(proclaim’ (type (sinple-array fixnum (4 4 4)) *ar3*))

Altering the faulty declaration improved the performance of the entire system
by 20%.

2.2.2 Poor Knowledge of the Implementation

The next example iswhere the implementation has not optimized a particular case
of ageneral facility, and the programmer has used the general facility thinking it
will be fast. Here five values are being returned in a situation where the order of
side effectsiscritical:

(rmul tipl e-val ue-progl
(values (f1 x)

12

(f2y)
(f3y)
(f4y)
(f5y))
(setf (aref arl il) (f6 vy))

(f7 xy))

The implementation happens to optimize mul t i pl e- val ue- pr ogl for up to
three return values, but the case of five values CONSes. The correct code follows:

(let ((x1 (f1 X))
(x2 (f2y))
(x3 (f3y))
(x4 (f4y))

(x5 (f5y)))
(setf (aref arl il) (f6y))

(f7 xvy)
(val ues x1 x2 x3 x4 x5))

Thereisno reason that aprogrammer should know that thisrewriteis needed. On
the other hand, finding that performance was not as expected should not have led
the manager of the programmer in question to conclude, as he did, that Lisp was
the wrong language.

2.2.3 Useof FORTRAN Idioms

Some Common Lisp compilers do not optimize the same way as others. The
following expression is sometimes used:

(* -1 <fornp)

when compilers often produce better code for this variant:

13

(- <fornw)

Of course, thefirst isthe Lisp analog of the FORTRAN idiom:

- -1*<fornp

224 Totally Inappropriate Data Structures

Some might find this example hard to believe. Thisreally occurred in some code
I’ ve seen:

(defun make-matrix (n m
(let ((matrix ()))
(dotinmes (i n matrix)
(push (make-list m) matrix))))

(defun add-matrix (nl nR)
(let ((I1 (length m))
(12 (length n2)))

(let ((matrix (make-matrix 11 12)))

(dotinmes (i 11 matrix)
(dotinmes (j 12)
(setf (nth i (nth j matrix))
(+ (nth i (nthj nl))
(nth i (nthj n2)))))))))

What’'sworse isthat in the particular application, the matrices were all fixed size,
and matrix arithmetic would have been just asfast in Lisp asin FORTRAN.

This example is bitterly sad: The code is absolutely beautiful, but it adds
matrices dowly. Therefore it is excellent prototype code and lousy production
code. You know, you cannot write production code as bad asthisin C.

14

2.3 IntegrationisGod

In the worse-is-better world, integration is linking your . o files together, freely
intercalling functions, and using the same basic data representations. You don’t
have a foreign loader, you don’'t coerce types across function-call boundaries,
you don’t make one language dominant, and you don’t make the woes of your
implementation technology impact the entire system.

The very best Lisp foreign functionality is simply ajoke when faced with the
above reality. Every item on the list can be addressed in a Lisp implementation.
This is just not the way Lisp implementations have been done in the right thing
world.

The virus lives while the complex organism is stillborn. Lisp must adapt, not
the other way around. The right thing and 2 shillings will get you a cup of tea.

2.4 Non-Lisp Environmentsare Catching Up

Thisishard to face up to. For example, most C environments—initially imitative
of Lisp environments—are now pretty good. Current best C environments have
the following:

e Symbolic debuggers
e Datainspectors

Source code level single stepping

Help on builtin operators

Window-based debugging

Symbolic stack backtraces

e Structure editors

Andsoonthey will haveincremental compilationand loading. These environments
are easily extendible to other languages, with multilingual environments not far
behind.

Though till the best, current Lisp environments have severa prominent fail-
ures. First, they tend to be window-based but not well integrated. That is, related

15

information is not represented so as to convey the relationship. A multitude of
windows does not mean integration, and neither does being implemented in the
same language and running in the same image. In fact, | believe no currently
available Lisp environment has any serious amount of integration.

Second, they are not persistent. They seemed to be defined for a single login
session. Files are used to keep persistent data—how 1960’s.

Third, they are not multilingual even when foreign interfaces are available.

Fourth, they do not address the software lifecycle in any extensive way. Doc-
umentation, specifications, maintenance, testing, validation, modification, and
customer support are all ignored.

Fifth, information is not brought to bear at the right times. The compiler is
able to provide someinformation, but the environment shoul d be able to generally
know what isfully defined and what is partially defined. Performance monitoring
should not be a chore.

Sixth, using the environment is difficult. There are too many things to know.
It's just too hard to manage the mechanics.

Seventh, environments are not multi-user when almost all interesting software
IS now written in groups.

The real problem has been that almost no progress in Lisp environments has
been made in the last 10 years.

3 How Lisp Can Win Big

When the sun comes up, 1’1l be on top.
You' re right down there looking up.
On my way to come up here,

I”’m gonna see you waiting there.

I’ mon my way to get next to you.

| know now that I’m gonna get there.
? & The Mysterians

The gloomy interlude can have a happy ending.

16

3.1 Continue Standardization Progress

We need to bury our differences at the ISO level and realize that there is a short
term need, which must be Common Lisp, and a long term need, which must
address al the issues for practical applications.

WEe' ve seen that the right thing attitude has brought us a very large, complex-
to-understand, and complex-to-implement Lisp—Common Lisp—that solvesway
too many problems. We need to move beyond Common Lisp for the future, but
that does not imply giving up on Common Lisp now. We' ve seen it is possible to
do delivery of applications, and | think it is possible to provide tools that make it
easier to write applications for deployment. A lot of work has gone into getting
Common Lisp to the point of a “right thing” in many ways, and there are viable
commercia implementations. But we need to solve the delivery and integration
problemsin spades.

Earlier | characterized the MIT approach as often yielding stillborn results.
To stop Common Lisp standardization now is equivalent to abortion, and that is
equivaent to the Lisp community giving up on Lisp. If we want to adopt the
New Jersey approach, it iswrong to give up on Lisp, because Cjust isn’'t theright
language for Al.

It also simply is not possible to dump Common Lisp now, work on a new
standard, and then standardize in atimely fashion. Common Lisp is all we have
at the moment. No other diaect is ready for standardization.

Scheme is a smaller Lisp, but it also suffers from the MIT approach. It is
too tight and not appropriate for large-scale software. At least Common Lisp has
some facilitiesfor that.

| think there should be an internationally recognized standard for Common
Lisp. | don't see what is to be gained by aborting the Common Lisp effort today
just because it happens to not be the best solution to a commercia problem. For
those who believe Lisp is dead or dying, what does killing off Common Lisp
achieve but to convince people that the Lisp community killsits own kind? | wish
less effort would go into preventing Common Lisp from becoming a standard
when it cannot hurt to have several Lisp standards.

On the other hand, there should be a strong effort towards the next generation
of Lisp. The worst thing we can do is to stand till as a community, and that is
what is happening.

All interested parties must step forward for the longer-term effort.

17

3.2 Retain theHigh Ground in Environments

| think there isamistake in following an environment path that creates monolithic
environments. It should be possible to use a variety of tools in an environment,
and it should be possible for those who create new tools to be able to integrate
them into the environment.

| believe that it is possible to build a tightly integrated environment that is
built on an open architecture in which all tools, including language processors,
are protocol-driven. | believe it is possible to create an environment that is
multilingual and addresses the software lifecycle problem without imposing a
particular software methodology on its users.

Our environments should not discriminate against non-Lisp programmers the
way existing environmentsdo. Lisp isnot the center of the world.

3.3 Implement Correctly

Even though Common Lisp is not structured as a kernel plus libraries, it can be
implemented that way. The kernel and library routines can be in the form of . o
filesfor easy linking with other, possibly non-Lisp, modules; the implementation
must make it possible to write, for example, small utility programs. It is also
possible to piggyback on existing compilers, especially those that use common
back ends. It is aso possible to implement Lisp so that standard debuggers,
possibly with extensions, can be made to work on Lisp code.

It might take time for developers of standard tools to agree to extend their
tools to Lisp, but it certainly won't happen until our (exceptional) language is
implemented more like ordinary ones.

3.4 AchieveTotal Integration

| believe it is possible to implement a Lisp and surrounding environment which
has no discrimination for or against any other language. It is possible using mul-
tilingual environments, clever representations of Lisp data, conservative garbage
collection, and conventional calling protocols to make a completely integrated
Lisp that has no demerits.

18

3.5 MakelLispthePremier Prototyping Language

Lisp is still the best prototyping language. We need to push this forward. A
multilingual environment could form the basis or infrastructure for a multilingual
prototyping system. This means doing more research to find new ways to exploit
Lisp's strengths and to introduce new ones.

Prototyping is the act of producing an initial implementation of a complex
system. A prototype can be easily instrumented, monitored, and altered. Proto-
types are often built from disparate parts that have been adapted to a new purpose.
Descriptions of the construction of a prototype often involve statements about
modifying the behaviora characteristics of an existing program. For example,
suppose there exists atree traversal program. The description of aprototypeusing
this program might start out by saying something like “let S; be the sequence of
leaf nodes visited by P on tree T; and S, the leaf nodes visited by P on tree To.
Let C be a correspondence between S, and S; wheref : S, — S, maps elements
to corresponding elements.” Subsequent statements might manipulate the corre-
spondence and use f . Once the definition of aleaf node is made explicit, thisisa
precise enough statement for a system to be able to modify the traversal routineto
support the correspondenceand f .

A language that describes the modification and control of an existing program
can be termed a program language. Program languages be built on one or sev-
eral underlying programming languages, and in fact can be implemented as part
of the functionality of the prototyping environment. This view is built on the
insight that an environment is a mechanism to assist a programmer in creating
a working program, including preparing the source text. There is no necessary
requirement that an environment be limited to working only with raw source text.
As another example, some systems comprise severa processes communicating
through channels. The creation of this part of the system can be visual, with the
final result produced by the environment being a set of source code in severa
languages, build scripts, link directives, and operating system calls. Because no
single programming language encompasses the program language, one could call
such alanguage an epilanguage.

3.6 TheNextLisp

| think there will be anext Lisp. This Lisp must be carefully designed, using the
principlesfor success we saw in worse-is-better.

19

There should be a simple, easily implementable kernel to the Lisp. That
kernel should be both more than Scheme—modules and macros—and less than
Scheme—continuations remain an ugly stain on the otherwise clean manuscript
of Scheme.

The kernel should emphasize implementational ssimplicity, but not at the ex-
pense of interface smplicity. Where one conflicts with the other, the capability
should be left out of the kernel. One reason is so that the kernel can serve as an
extension language for other systems, much as GnuEmacs uses aversion of Lisp
for defining Emacs macros.

Some aspects of the extreme dynamism of Common Lisp should be re-
examined, or at least the tradeoffs reconsidered. For example, how often does
areal program do this?

(defun f ...)
(dotinmes (...)

(setf (synbol-function 'f) # (lanbda ...))
-)

I mplementations of the next Lisp should not be influenced by previousimplemen-
tations to make this operation fast, especialy at the expense of poor performance
of all other function calls.

The language should be segmented into at least four layers:

1. The kernel language, which is small and simple to implement. In all cases,
the need for dynamic redefinition should be re-examined to determine that
support at this level is necessary. | believe nothing in the kernel need be
dynamically redefinable.

2. A linguistic layer for fleshing out the language. This layer may have some
implementational difficulties, and it will probably have dynamic aspectsthat
aretoo expensive for the kernel but too important to leave out.

3. Alibrary. Most of what isin Common Lisp would bein thislayer.

4. Environmentally provided epilinguistic features.

20

In the first layer | include conditionals, function calling, all primitive data
structures, macros, single values, and very basic object-oriented support.

Inthesecond layer | include multipleva uesand more el aborate obj ect-oriented
support. The second layer is for difficult programming constructs that are too
important to leave to environmentsto provide, but which have sufficient semantic
consequencesto warrant precise definition. Someformsof redefinition capabilities
might reside here.

In the third layer | include sequence functions, the elaborate 10 functions,
and anything else that is ssimply implemented in the first and possibly the second
layers. These functions should be linkable.

In the fourth layer | include those capabilities that an environment can and
should provide, but which must be standardized. A typical exampleisdef net hod
from CLOS. In CLOS, generic functions are made of methods, each method ap-
plicable to certain classes. The first layer has a definition form for a complete
generic function—that is, for a generic function along with all of its methods,
defined in one place (which is how the layer 1 compiler wants to see it). There
will also be means of associating a name with the generic function. However,
while developing a system, classes will be defined in various places, and it makes
sense to be able to see relevant (applicable) methods adjacent to these classes.
def net hod is the construct to define methods, and def et hod forms can be
placed anywhere amongst other definitional forms.

But methods are rel evant to each class on which the method is specialized, and
also to each subclass of those classes. So, where should the unique def et hod
form be placed? The environment should allow the programmer to see the method
definition in any or al of these places, while the real definition should be in
some particular place. That place might as well be in the single generic function
definitionform, anditisuptotheenvironment to show thedef et hod equivalent
near relevant classes when required, and to accept as input the source in the form
of adef met hod (which it then places in the generic function definition).

We want to standardize the def met hod form, but it is a linguistic feature
provided by the environment. Similarly, many uses of elaborate lambda-list
syntax, such as keyword arguments, are examples of linguistic support that the
environment can provide possibly by using color or other adj uncts to the text.

In fact, the area of function-function interfaces should be re-examined to see
what sorts of argument naming schemes are needed and in which layer they need
to be placed.

Finally, note that it might be that every layer 2 capability could be provided in

21

alayer 1 implementation by an environment.

3.7 Help Application WritersWin

The Lisp community has too few application writers. The Lisp vendors need
to make sure these application writers win. To do this requires that the parties
involved be open about their problems and not adversarial. For example, when
an expert system shell company finds problems, it should open up its source code
to the Lisp vendor so that both can work towards the common goal of making
afaster, smaller, more deliverable product. And the Lisp vendors should do the
same.

The business leadership of the Al community seems to have adopted the
worst caricature-like traits of business practice: secrecy, mistrust, run-up-the-
score competitiveness. We are an industry that has enough common competitors
without searching for them among our own ranks.

Sometimes the sun also rises.

References

[1] ? & the Mysterians, “96 Tears,” Pa-go-go Records 1966, re-released on
Cameo Records, September 1966.

22

