\qquad

CSE341, Winter 2013, Midterm Examination February 8, 2013

Please do not turn the page until 12:30.

Rules:

- The exam is closed-book, closed-note, except for one side of one 8.5×11 in piece of paper.
- Please stop promptly at 1:20.
- You can rip apart the pages, but please staple them back together before you leave.
- There are 100 points total, distributed unevenly among 5 questions (all with multiple parts).
- When writing code, style matters, but don't worry much about indentation.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad

1. This problem uses this datatype binding, where a value of type points describes a set of points on the plane, i.e., a 2 -D plot with an x-axis and a y-axis.
```
datatype points = Point of real * real
    | Seg of real * real * real * real
    | Union of points * points
    | Shift of points * real * real
```

- Point (x, y) represents the point (x, y).
- $\operatorname{Seg}(\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2)$ respresents all points on the line segment with endpoints ($\mathrm{x} 1, \mathrm{y} 1$) and ($\mathrm{x} 2, \mathrm{y} 2$).
- Union($s 1, \mathrm{~s} 2$) represents all points represented by s1 unioned with all points represented by s2.
- Shift($\mathrm{s}, \mathrm{dx}, \mathrm{dy}$) represents the points represented by s after shifting them to the right by dx and up by dy.

Note: we did not use type real much in class, but you can use arithmetic operations (e.g., +) and comparison operations (e.g., >) as expected.
(a) (12 points) Write an ML function rightmost of type points $->$ real $*$ real such that rightmost s returns the point in the set represented by s with the largest x-coordinate. (You can resolve ties however you wish.) Notice the result type is real $*$ real, the x-coordinate and y-coordinate.
(b) (12 points) Write an ML function max_shifts of type points -> int that given s computes the maximum number of shifts that apply to a single "point" or "segment" in s. Note this is not necessarily the number of Shift constructors in s. For example, the correct answer for

```
Union(Shift(Point(0.0,0.0),1.0,1.0),
    Shift(Union(Shift(Point(2.0,2.0),1.0,1.0),
            Shift(Shift(Seg(3.0,4.0,5.0,6.0),7.0,8.0),9.0,10.0)),
        20.0,75.0))
```

is 3 because the one segment is under three Shift constructors, including the one outside the nested Union.

Name:

More room for Problem 1 in case you need it

Name: \qquad
2. This problem uses these two similar but different functions:

```
fun f1 (xs,ys) =
    case (xs,ys) of
        ([], []) => []
        | (x::xs', y::ys') => (x,y)::(f1(xs',ys'))
        | (x::xs', []) => []
        | ([], y::ys') => []
fun f2 (xs,ys) =
    case (xs,ys) of
            ([],[]) => []
            | (x::xs', y::ys') => (x,y)::(f2(xs',ys'))
            | (x::xs', []) => (x,0)::(f2(xs',[]))
            | ([], y::ys') => (0,y)::(f2([],ys'))
```

(a) ($\mathbf{5}$ points) Fill in the blanks so that c 1 and d 1 are both bound to $[(2,2),(1,1),(0,0)]$
val a1 = \qquad
val b1 =
val $c 1=f 1(a 1, b 1)$
val d1 = f2 (a1,b1)
(b) (5 points) Fill in the blanks so that d2 but not c 2 is bound to $[(2,2),(1,1),(0,0)]$
val a2 = \qquad
val b2 = \qquad
val $\mathrm{c} 2=\mathrm{f} 1(\mathrm{a} 2, \mathrm{~b} 2)$
val d2 = f2 (a2,b2)
(c) (5 points) Fill in the blanks so that c3 but not d3 is bound to $[(2,2),(1,1),(0,0)]$
val a3 = \qquad
val b3 =

val $c 3=f 1(a 3, b 3)$
val $\mathrm{d} 3=\mathrm{f} 2(\mathrm{a} 3, \mathrm{~b} 3)$

Name: \qquad
3. For each of the following programs, give the value that ans is bound to after evaluation:
(a) (4 points)
val $\mathrm{x}=1$
fun f y =
let
val $x=y+1$
val $y=x+1$
in
$y+1$
end
val $z=f 4$
fun $\mathrm{f} x=\mathrm{x}$
val ans = z
(b) (4 points)
val $\mathrm{x}=1$
val $y=2$
fun $f(g, h)=g x+h y$
val $x=3$
val $y=4$
val ans $=f((f n z=>x),(f n z=>z))$
(c) (4 points)
exception E
val $\mathrm{x}=1$
fun $f x=$ if $x=2$ then raise E else 14
val $\mathrm{x}=2$
val ans $=((f$ x) + 4) handle E => 9
(d) (4 points)

$$
\text { val } \mathrm{z}=2
$$

$$
\text { val } f=(f n x \Rightarrow x+1) \circ(f n y=>\text { if } y=z \text { then } 4 \text { else } y)
$$

val z = 3
val ans $=$ List.map $f[1,2,3,4,5]$

Name: \qquad
4. (a) ($\mathbf{1 0}$ points) Without using any helper functions (such as foldl), write an ML function in_order that behaves as follows:

- It takes two arguments in curried form: (1) a function f that given a list element produces an integer and (2) a list xs.
- It returns true if and only if for all elements of $x s, f$ applied to the element returns a number less than or equal to f applied to any later elements of the list. (This means the result is true for any list with fewer than two elements.)
(b) ($\mathbf{6}$ points) Using in_order, write a function shorter_strings that takes a list of strings and returns true if and only if each string in the list is longer than the strings that come later in the list. Hint: You can use ML's \sim operator for negation.
(c) (4 points) What is the type of in_order?
(d) (2 points) What is the type of shorter_strings?
(e) (4 points) When your solution to part (a) is given a list xs of length n, how many times is the function passed for f called before in_order returns?
(f) (3 points) Suppose another student has a different answer to part (e) and you are both correct because you have different correct answers to part (a). Are your solutions to part (a) equivalent? Explain briefly.

Name: \qquad
5. In this problem, suppose we have an ML structure M and signature S in this standard usage:

```
signature S =
sig
end
structure M :> S =
struct
    ...
end
```

Assume everything type-checks initially, meaning M matches S. For each of the following statements, answer "always," "sometimes," or "never."
($\mathbf{1 6}$ points) (2 points each)
(a) If S originally contains val f : int -> int and we comment out this line, then M will still match S.
(b) If S originally contains val f : int -> int and we comment out this line, then a client of M will still type-check.
(c) If S originally does not contain val g : string -> string and we add it to S , then M will still match S .
(d) If S originally does not contain val g : string -> string and we add it to S , then a client of M will still type-check.
(e) If S originally contains an abstract type type t and we replace this line with datatype $t=$ Foo of int | Bar of bool, then M will still match S.
(f) If S originally contains an abstract type type t and we replace this line with datatype $\mathrm{t}=\mathrm{Foo}$ of int | Bar of bool, then a client of M will still type-check.
(g) If S originally contains the line datatype $t=$ Foo of int | Bar of bool, and we replace this line with type t , then M will still match S .
(h) If S originally contains the line datatype $t=$ Foo of int | Bar of bool, and we replace this line with type t , then a client of M will still type-check.

Name:

More room in case you need it.

