
Name:

CSE341, Winter 2013, Midterm Examination
February 8, 2013

Please do not turn the page until 12:30.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 1:20.

• You can rip apart the pages, but please staple them back together before you leave.

• There are 100 points total, distributed unevenly among 5 questions (all with multiple parts).

• When writing code, style matters, but don’t worry much about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

• If you have questions, ask.

• Relax. You are here to learn.



Name:

1. This problem uses this datatype binding, where a value of type points describes a set of points on the
plane, i.e., a 2-D plot with an x-axis and a y-axis.

datatype points = Point of real * real

| Seg of real * real * real * real

| Union of points * points

| Shift of points * real * real

• Point(x,y) represents the point (x,y).

• Seg(x1,y1,x2,y2) respresents all points on the line segment with endpoints (x1,y1) and (x2,y2).

• Union(s1,s2) represents all points represented by s1 unioned with all points represented by s2.

• Shift(s,dx,dy) represents the points represented by s after shifting them to the right by dx and
up by dy.

Note: we did not use type real much in class, but you can use arithmetic operations (e.g., +) and
comparison operations (e.g., >) as expected.

(a) (12 points) Write an ML function rightmost of type points -> real * real such that
rightmost s returns the point in the set represented by s with the largest x-coordinate. (You
can resolve ties however you wish.) Notice the result type is real * real, the x-coordinate and
y-coordinate.

(b) (12 points) Write an ML function max_shifts of type points -> int that given s computes
the maximum number of shifts that apply to a single “point” or “segment” in s. Note this is not
necessarily the number of Shift constructors in s. For example, the correct answer for

Union(Shift(Point(0.0,0.0),1.0,1.0),

Shift(Union(Shift(Point(2.0,2.0),1.0,1.0),

Shift(Shift(Seg(3.0,4.0,5.0,6.0),7.0,8.0),9.0,10.0)),

20.0,75.0))

is 3 because the one segment is under three Shift constructors, including the one outside the
nested Union.

Solution:
See next page



Name:

More room for Problem 1 in case you need it

Solution:

(a) fun rightmost s =

case s of

Point p => p

| Seg(x1,y1,x2,y2) => if x1 > x2 then (x1,y1) else (x2,y2)

| Union(s1,s2) =>

let

val (x1,y1) = rightmost s1

val (x2,y2) = rightmost s2

in

if x1 > x2 then (x1,y1) else (x2,y2)

end

| Shift(s1,dx,dy) =>

let

val (x1,y1) = rightmost s1

in

(x1+dx,y1+dy)

end

(b) fun max_shifts s =

case s of

Point _ => 0

| Seg _ => 0

| Union(s1,s2) => Int.max(max_shifts s1, max_shifts s2)

| Shift(s,_,_) => 1 + max_shifts s

You can also implement the Union case without using the standard library with:

let

val i1 = max_shifts s1

val i2 = max_shifts s2

in

if i1 > i2 then i1 else i2

end



Name:

2. This problem uses these two similar but different functions:

fun f1 (xs,ys) =

case (xs,ys) of

([], []) => []

| (x::xs’, y::ys’) => (x,y)::(f1(xs’,ys’))

| (x::xs’, []) => []

| ([], y::ys’) => []

fun f2 (xs,ys) =

case (xs,ys) of

([],[]) => []

| (x::xs’, y::ys’) => (x,y)::(f2(xs’,ys’))

| (x::xs’, []) => (x,0)::(f2(xs’,[]))

| ([], y::ys’) => (0,y)::(f2([],ys’))

(a) (5 points) Fill in the blanks so that c1 and d1 are both bound to [(2,2),(1,1),(0,0)]

val a1 = ____________________

val b1 = ____________________

val c1 = f1(a1,b1)

val d1 = f2(a1,b1)

(b) (5 points) Fill in the blanks so that d2 but not c2 is bound to [(2,2),(1,1),(0,0)]

val a2 = ____________________

val b2 = ____________________

val c2 = f1(a2,b2)

val d2 = f2(a2,b2)

(c) (5 points) Fill in the blanks so that c3 but not d3 is bound to [(2,2),(1,1),(0,0)]

val a3 = ____________________

val b3 = ____________________

val c3 = f1(a3,b3)

val d3 = f2(a3,b3)

Solution:

(a) a1 and b1 must both be [2,1,0].

(b) One of a2 and b2 must be [2,1,0] and the other must be [2,1].

(c) One of a3 and b3 must be [2,1,0] and the other must have at least 4 elements and start with
[2,1,0].



Name:

3. For each of the following programs, give the value that ans is bound to after evaluation:

(a) (4 points)

val x = 1

fun f y =

let

val x = y + 1

val y = x + 1

in

y + 1

end

val z = f 4

fun f x = x

val ans = z

(b) (4 points)

val x = 1

val y = 2

fun f (g,h) = g x + h y

val x = 3

val y = 4

val ans = f ((fn z => x), (fn z => z))

(c) (4 points)

exception E

val x = 1

fun f x = if x=2 then raise E else 14

val x = 2

val ans = ((f x) + 4) handle E => 9

(d) (4 points)

val z = 2

val f = (fn x => x + 1) o (fn y => if y=z then 4 else y)

val z = 3

val ans = List.map f [1,2,3,4,5]

Solution:

(a) 7

(b) 5

(c) 9

(d) [2,5,4,5,6]



Name:

4. (a) (10 points) Without using any helper functions (such as foldl), write an ML function in_order

that behaves as follows:

• It takes two arguments in curried form: (1) a function f that given a list element produces
an integer and (2) a list xs.

• It returns true if and only if for all elements of xs, f applied to the element returns a number
less than or equal to f applied to any later elements of the list. (This means the result is true
for any list with fewer than two elements.)

(b) (6 points) Using in_order, write a function shorter_strings that takes a list of strings and
returns true if and only if each string in the list is longer than the strings that come later in the
list. Hint: You can use ML’s ∼ operator for negation.

(c) (4 points) What is the type of in_order?

(d) (2 points) What is the type of shorter_strings?

(e) (4 points) When your solution to part (a) is given a list xs of length n, how many times is the
function passed for f called before in_order returns?

(f) (3 points) Suppose another student has a different answer to part (e) and you are both correct
because you have different correct answers to part (a). Are your solutions to part (a) equivalent?
Explain briefly.

Solution:

(a) This solution is probably the easiest, but arguably not as good as one that calls f once for each
list element.

fun in_order f xs =

case xs of

[] => true

| [_] => true

| head::neck::tail => f head <= f neck andalso in_order f (neck::tail)

(b) This question was badly worded: It should have said longer or the same length as, but almost
everyone attemped it as intended.
val shorter_strings = in_order (fn s => ~ (String.size s))

(c) (’a -> int) -> ’a list -> bool

(d) string list -> bool

(e) This question was not worded well. We meant to ask the number of times called when in_order

returns true. Most people answered it that way. For the intended question and the answer to part
(a) above, 2n− 2, but it depends on how part (a) is written.

(f) No, because if f has any side-effects (e.g., printing or assigning to mutable data), then the two
functions could behave differently. But if f is a “pure function” then the answer is yes.



Name:

5. In this problem, suppose we have an ML structure M and signature S in this standard usage:

signature S =

sig

...

end

structure M :> S =

struct

...

end

Assume everything type-checks initially, meaning M matches S. For each of the following statements,
answer “always,” “sometimes,” or “never.”

(16 points) (2 points each)

(a) If S originally contains val f : int -> int and we comment out this line, then M will still match
S.

(b) If S originally contains val f : int -> int and we comment out this line, then a client of M will
still type-check.

(c) If S originally does not contain val g : string -> string and we add it to S, then M will still
match S.

(d) If S originally does not contain val g : string -> string and we add it to S, then a client of
M will still type-check.

(e) If S originally contains an abstract type type t and we replace this line with
datatype t = Foo of int | Bar of bool, then M will still match S.

(f) If S originally contains an abstract type type t and we replace this line with
datatype t = Foo of int | Bar of bool, then a client of M will still type-check.

(g) If S originally contains the line datatype t = Foo of int | Bar of bool, and we replace this
line with type t, then M will still match S.

(h) If S originally contains the line datatype t = Foo of int | Bar of bool, and we replace this
line with type t, then a client of M will still type-check.

Solution:
Explanations were not required, but are included here

(a) Always: If M matches everything in S, it will still match with one less variable binding.

(b) Sometimes: A client will type-check if and only if it was not using M.f.

(c) Sometimes: It will match if and only if defines a function g with a type equal or more general
than string->string.

(d) Always: Providing another function outside the module cannot cause code not to type-check – it
just was not using this feature before. (Will also accept answer Sometimes if justified in terms of
the open construct and shadowing.)

(e) Sometimes: It will match if and only if its internal definition of type t is this datatype binding.

(f) Always: The client type-checked without knowing the representation of M.t, so it will still type-
check without using this extra knowledge.

(g) Always: We can take any type we were exposing concretely and hide it via a signature.

(h) Sometimes: A client will type-check if and only if it was not using any of t’s constructors – either
as functions or as patterns.



Name:

More room in case you need it.


