
Name:

CSE341, Spring 2013, Midterm Examination
May 3, 2013

Please do not turn the page until 12:30.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 1:20.

• You can rip apart the pages, but please staple them back together before you leave.

• There are 100 points total, distributed unevenly among 6 questions (all with multiple parts).

• When writing code, style matters, but don’t worry much about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
problems.

• If you have questions, ask.

• Relax. You are here to learn.



Name:

1. This problem uses this datatype binding for ternary trees, where a ternary tree is a tree where all
non-leaves have exactly three children:

datatype int_ternary_tree = Leaf of int

| Node of int

* int_ternary_tree

* int_ternary_tree

* int_ternary_tree

(a) (8 points) Write an ML function to_list of type int_ternary_tree -> int list. The result
should have every number that appears anywhere in the argument (and no other numbers). If a
number appears n times in the argument, then it also appears n times in the result. The order of
numbers in the result does not matter.

Use no helper functions other than :: and @.

(b) (10 points) Write a second version of to_list that:

• Does not use @ (and not your own reimplementation of it)

• Does use a locally-defined helper function of type int_ternary_tree * int list -> int list

• Does not need to produce a list in the same order as your answer in part (a).

(c) (3 points) Is your answer to part (a) tail-recursive? Explain in 1-2 sentences.

(d) (3 points) Is your answer to part (b) tail-recursive? Explain in 1-2 sentences.

Solution:

(a) fun to_list t =

case t of

Leaf i => [i]

| Node(i,a,b,c) => i :: ((to_list_a a) @ (to_list_a b) @ (to_list_a c))

(b) fun to_list t =

let

fun f (t,acc) =

case t of

Leaf i => i::acc

| Node(i,a,b,c) => f(a,f(b,f(c,i::acc)))

in

f(t,[])

end

(c) No, after the recursive calls, the caller passes the result to @ rather than immediately returning
the result.

(d) No, one of the 3 recursive calls to f is a tail call, but the other two are not because the results
are passed to other calls before the caller returns.



Name:

2. This problem uses this ML code:

exception Foo

fun f1 (xs,ys) =

case (xs,ys) of

(x::[], _) => x

| (_, z::[]) => z

| (x::y::_, _) => y

| _ => raise Foo

fun f2 (xs,ys) =

case (xs,ys) of

(x::[], _) => x

| (x::y::_, _) => y

| (_, z::[]) => z

| _ => raise Foo

fun f3 (xs,ys) =

case (xs,ys) of

(x::y::_, _) => y

| (_, z::[]) => z

| (x::[], _) => x

| _ => raise Foo

(a) (5 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and f1(a,b), f2(a,b), and f3(a,b) all evaluate to 341.

(b) (4 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and f1(a,b) and f2(a,b) evaluate to 341 but f3(a,b) does not.

(c) (4 points) Give an a and b such that a and b are lists with no numbers duplicated (not even
across the two lists) and f2(a,b) and f3(a,b) evaluate to 341 but f1(a,b) does not.

Solution:

(a) Three approaches:

• a is [] or a list with three or more elements (with no 341 and no duplicates) and b is [341]

• a is [341] and b does not have 1 element (and no duplicates or 341)

• a has two or more elements with 341 second and b does not have 1 element (with no dup-
blicates in the lists) has 341 either first or second and b does not have 1 element (with no
duplicates in the lists)

(b) a is [341] and b is any one-element list not containing 341

(c) a is any two-element list with 341 second— and b is any one-element list (with no duplicates in
the lists)



Name:

3. For each of the following programs, give the value ans is bound to after evaluation.

(a) (5 points)

fun f x y z = if z > 0 then (fn w => w + x + y) else (fn w => w + x - y)

val a = 1

val b = 2

val c = f b a

val d = c ~7

val ans = d 4

(b) (5 points)

fun f p =

let

val x = 3

val y = 4

val (z,w) = p

in

(z (w y)) + x

end

val x = 1

val y = 2

val ans = f((fn z => x + z), (fn x => x + x))

(c) (5 points)

fun f x = x + 7

fun g y =

if y > 0

then (f (y-1)) + 1

else 4

and f y = (* notice the keyword and on this line *)

if y > 0

then (g (y-1)) + 2

else 5

val ans = f 3

Solution:

(a) 5

(b) 12

(c) 9



Name:

4. (14 points) This problem uses this ML code:

datatype my_int_list = Empty

| Cons of int * my_int_list

fun foo g a x =

case x of

Empty => a

| Cons(i,x’) => foo g (g(a,i)) x’

(a) By using foo but not using any fun-bindings (you can use val-bindings and anonymous functions),
bind to first_odd a function of type my_int_list -> int that returns the odd number closest
to the beginning (head) of the my_int_list, or 0 if the my_int_list contains no odd numbers.

(b) By using foo but not using any fun-bindings (you can use val-bindings and anonymous functions),
bind to last_odd a function of type my_int_list -> int that returns the odd number closest
to the end of the my_int_list, or 0 if the my_int_list contains no odd numbers.

If the no-fun-bindings requirement is confusing you, use a fun-binding for some partial credit, but still
use foo as a helper function.

Solution:

(a) val first_odd = foo (fn (a,i) => if a=0 andalso i mod 2 = 1

then i

else a)

0

(b) val last_odd = foo (fn (a,i) => if i mod 2 = 1

then i

else a)

0



Name:

5. (a) (11 points) Without using any helper functions, write an ML function filter_increasing,
which works as follows:

• It takes three arguments in curried form: (1) a function f that takes list elements and returns
integers, (2) an integer i, and (3) a list xs.

• It returns a list that contains a subset of the elements in xs in the same order they appear
in xs.

• An element of xs is in the output if and only if f applied to the element produces a number
greater than i and greater than the number produced by f for all elements earlier (closer to
the head) in the list.

(b) (5 points) What is the type of filter_increasing?

Solution:

(a) fun filter_increasing f i xs =

case xs of

[] => []

| x::xs’ =>

let

val j = f x

in

if j > i

then x :: filter_increasing f j xs’

else filter_increasing f i xs’

end

(b) (’a -> int) -> int -> ’a list -> ’a list



Name:

6. (18 points) This problem uses this ML signature definition:

signature S =

sig

type t

(* one more line here as described below *)

end

The comment in the definition above can be replaced by any one of the following:

(* 1 *) val f : int * int -> bool

(* 2 *) val f : int -> int -> bool

(* 3 *) val f : int * ’a -> bool

(* 4 *) val f : t * t -> bool

(* 5 *) val f : t * int -> bool

(* 6 *) val f : t * ’a -> bool

Now suppose we have a structure definition like this:

structure M :> S =

struct

type t = int

fun f ...

end

For each different definition of f below, list exactly which types for f listed above would cause the
signature to match, meaning M would type-check with signature S. For example, an answer could be,
“1, 3, and 4” where the numbers refer to the numbers in comments above.

(a) fun f (x,y) = x > y andalso y > 3

(b) fun f (x,y) = x > 7

(c) fun f (x,y) = y > 7

(d) fun f (x,y) = if x > y then 34 else 42

(e) fun f x = x > 7

(f) fun f x = true

Solution:

(a) 1, 4, 5

(b) 1, 3, 4, 5, 6

(c) 1, 4, 5

(d) none

(e) none

(f) 1, 3, 4, 5, 6


