\qquad

CSE341, Spring 2013, Midterm Examination May 3, 2013

Please do not turn the page until 12:30.

Rules:

- The exam is closed-book, closed-note, except for one side of one 8.5×11 in piece of paper.
- Please stop promptly at 1:20.
- You can rip apart the pages, but please staple them back together before you leave.
- There are 100 points total, distributed unevenly among 6 questions (all with multiple parts).
- When writing code, style matters, but don't worry much about indentation.

Advice:

- Read questions carefully. Understand a question before you start writing.
- Write down thoughts and intermediate steps so you can get partial credit.
- The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the problems.
- If you have questions, ask.
- Relax. You are here to learn.

Name: \qquad

1. This problem uses this datatype binding for ternary trees, where a ternary tree is a tree where all non-leaves have exactly three children:
datatype int_ternary_tree = Leaf of int
| Node of int

* int_ternary_tree
* int_ternary_tree
* int_ternary_tree
(a) (8 points) Write an ML function to_list of type int_ternary_tree -> int list. The result should have every number that appears anywhere in the argument (and no other numbers). If a number appears n times in the argument, then it also appears n times in the result. The order of numbers in the result does not matter.

Use no helper functions other than : : and @.
(b) ($\mathbf{1 0}$ points) Write a second version of to_list that:

- Does not use @ (and not your own reimplementation of it)
- Does use a locally-defined helper function of type int_ternary_tree * int list -> int list
- Does not need to produce a list in the same order as your answer in part (a).
(c) (3 points) Is your answer to part (a) tail-recursive? Explain in 1-2 sentences.
(d) ($\mathbf{3}$ points) Is your answer to part (b) tail-recursive? Explain in 1-2 sentences.

Solution:

(a) fun to_list $t=$
case t of
Leaf i => [i]
| Node(i,a,b,c) => i :: ((to_list_a a) @ (to_list_a b) @ (to_list_a c))
(b) fun to_list $\mathrm{t}=$
let
fun $f(t, a c c)=$
case t of
Leaf i => i::acc
| Node(i,a,b,c) => f(a,f(b,f(c,i::acc)))
in
$f(t,[])$
end
(c) No, after the recursive calls, the caller passes the result to @ rather than immediately returning the result.
(d) No, one of the 3 recursive calls to f is a tail call, but the other two are not because the results are passed to other calls before the caller returns.

Name: \qquad
2. This problem uses this ML code:

```
exception Foo
fun f1 (xs,ys) =
    case (xs,ys) of
        (x::[], _) => x
        | (_, z::[]) => z
        | (x::y::_, _) => y
        | _ => raise Foo
fun f2 (xs,ys) =
    case (xs,ys) of
        (x::[], _) => x
        | (x::y::_, _) => y
        | (_, z::[]) => z
        | _ => raise Foo
fun f3 (xs,ys) =
    case (xs,ys) of
        (x::y::_, _) => y
        | (_, z::[]) => z
        | (x::[], _) => x
        | _ => raise Foo
```

(a) ($\mathbf{5}$ points) Give an a and b such that a and b are lists with no numbers duplicated (not even across the two lists) and $\mathrm{f} 1(\mathrm{a}, \mathrm{b})$, $\mathrm{f} 2(\mathrm{a}, \mathrm{b})$, and $\mathrm{f} 3(\mathrm{a}, \mathrm{b})$ all evaluate to 341 .
(b) (4 points) Give an a and b such that a and b are lists with no numbers duplicated (not even across the two lists) and $f 1(\mathrm{a}, \mathrm{b})$ and $\mathrm{f} 2(\mathrm{a}, \mathrm{b})$ evaluate to 341 but $\mathrm{f} 3(\mathrm{a}, \mathrm{b})$ does not.
(c) (4 points) Give an a and b such that a and b are lists with no numbers duplicated (not even across the two lists) and $\mathrm{f} 2(\mathrm{a}, \mathrm{b})$ and $\mathrm{f} 3(\mathrm{a}, \mathrm{b})$ evaluate to 341 but $\mathrm{f} 1(\mathrm{a}, \mathrm{b})$ does not.

Solution:

(a) Three approaches:

- a is [] or a list with three or more elements (with no 341 and no duplicates) and b is [341]
- a is [341] and b does not have 1 element (and no duplicates or 341)
- a has two or more elements with 341 second and b does not have 1 element (with no dupblicates in the lists) has 341 either first or second and b does not have 1 element (with no duplicates in the lists)
(b) a is [341] and b is any one-element list not containing 341
(c) a is any two-element list with 341 second - and b is any one-element list (with no duplicates in the lists)

Name: \qquad
3. For each of the following programs, give the value ans is bound to after evaluation.
(a) ($\mathbf{5}$ points)
fun $f x y z=$ if $z>0$ then (fn w $=>$ w $+\mathrm{x}+\mathrm{y}$) else (fn w $=>\mathrm{w}+\mathrm{x}-\mathrm{y}$)
val $\mathrm{a}=1$
val $\mathrm{b}=2$
val $c=f \mathrm{~b}$ a
val d = c ~7
val ans = d 4
(b) ($\mathbf{5}$ points)
fun $\begin{gathered}f \\ \text { let }\end{gathered}$
val $\mathrm{x}=3$
val $\mathrm{y}=4$
val $(z, w)=p$
in
(z (w y)) + x
end
val $\mathrm{x}=1$
val $\mathrm{y}=2$
val ans = $f((f n z=>x+z),(f n x=>x+x))$
(c) ($\mathbf{5}$ points)

```
fun f x = x + 7
    fun g y =
        if y > 0
        then (f (y-1)) + 1
        else 4
    and f y = (* notice the keyword and on this line *)
        if y > 0
        then (g (y-1)) + 2
        else 5
    val ans = f 3
```


Solution:

(a) 5
(b) 12
(c) 9

Name: \qquad
4. ($\mathbf{1 4}$ points) This problem uses this ML code:

```
datatype my_int_list = Empty
    | Cons of int * my_int_list
fun foo g a x =
    case x of
        Empty => a
        | Cons(i,x') => foo g (g(a,i)) x'
```

(a) By using foo but not using any fun-bindings (you can use val-bindings and anonymous functions), bind to first_odd a function of type my_int_list -> int that returns the odd number closest to the beginning (head) of the my_int_list, or 0 if the my_int_list contains no odd numbers.
(b) By using foo but not using any fun-bindings (you can use val-bindings and anonymous functions), bind to last_odd a function of type my_int_list -> int that returns the odd number closest to the end of the my_int_list, or 0 if the my_int_list contains no odd numbers.

If the no-fun-bindings requirement is confusing you, use a fun-binding for some partial credit, but still use foo as a helper function.

Solution:

```
(a) val first_odd = foo (fn (a,i) => if a=0 andalso i mod 2 = 1
    then i
    else a)
    0
(b) val last_odd = foo (fn (a,i) => if i mod 2 = 1
    then i
    else a)

Name: \(\qquad\)
5. (a) ( \(\mathbf{1 1}\) points) Without using any helper functions, write an ML function filter_increasing, which works as follows:
- It takes three arguments in curried form: (1) a function f that takes list elements and returns integers, (2) an integer i, and (3) a list xs.
- It returns a list that contains a subset of the elements in xs in the same order they appear in xs.
- An element of xs is in the output if and only if \(f\) applied to the element produces a number greater than \(i\) and greater than the number produced by \(f\) for all elements earlier (closer to the head) in the list.
(b) ( 5 points) What is the type of filter_increasing?

\section*{Solution:}
(a) fun filter_increasing \(f\) i xs =
case xs of
[] => []
| x::xs' =>
let
val \(j=f x\)
in
if \(j>i\)
then x :: filter_increasing f j xs'
else filter_increasing f i xs'
end
(b) ('a -> int) -> int -> 'a list -> 'a list

Name: \(\qquad\)
6. (18 points) This problem uses this ML signature definition:
signature \(\mathrm{S}=\)
sig
type t
(* one more line here as described below *)
end
The comment in the definition above can be replaced by any one of the following:
```

(* 1 *) val f : int * int -> bool
(* 2 *) val f : int -> int -> bool
(* 3 *) val f : int * 'a -> bool
(* 4 *) val f : t * t -> bool
(* 5 *) val f : t * int -> bool
(* 6 *) val f : t * 'a -> bool

```

Now suppose we have a structure definition like this:
```

structure M :> S =
struct
type t = int
fun f ...
end

```

For each different definition of \(f\) below, list exactly which types for \(f\) listed above would cause the signature to match, meaning \(M\) would type-check with signature \(S\). For example, an answer could be, " 1,3 , and 4 " where the numbers refer to the numbers in comments above.
(a) fun \(f(x, y)=x>y\) andalso \(y>3\)
(b) fun \(f(x, y)=x>7\)
(c) fun \(f(x, y)=y>7\)
(d) fun \(f(x, y)=\) if \(x>y\) then 34 else 42
(e) fun \(f x=x>7\)
(f) fun \(f \mathrm{x}=\) true

\section*{Solution:}
(a) \(1,4,5\)
(b) \(1,3,4,5,6\)
(c) \(1,4,5\)
(d) none
(e) none
(f) \(1,3,4,5,6\)```

