
CSE 341 — General Programming Language Concepts — Mini Exercises —
Answers

1. Consider the following example in Ruby.

def test k
k = k+5
print k

end

n = 0
test n
print n

(a) What is the output in normal Ruby?
5
0

(b) What would the output be if k were passed by reference?
5
5

2. Here is a Racket example.

(define a 3)

(define (test x)
(printf "starting test - x = ˜a\n" x)
(set! a (+ a 1))
(printf "after first set! - x = ˜a\n" x)
(set! a (+ a 1))
(printf "leaving test - x = ˜a\n" x))

(test (+ a 10))

(a) What is the output in normal Racket?

starting test - x = 13
after first set! - x = 13
leaving test - x = 13

(b) What would the output be if x were passed by reference? The same!
(c) What would the output be if x were passed by name?

starting test - x = 13
after first set! - x = 14
leaving test - x = 15

(d) Rewrite the example to simulate call by name by passing a lambda.

1



(define a 3)
(define (test x)

(printf ‘‘starting test - x evaluated = ˜a\n’’ (x))
(set! a (+ a 1))
(printf ‘‘after first set! - x evaluated = ˜a\n’’ (x))
(set! a (+ a 1))
(printf ‘‘leaving test -x evaluated = ˜a\n’’ (x)))

(test (lambda () (+ a 10)))

3. True or false?

(a) Haskell is statically typed if the programmer includes a type declaration for all functions; otherwise it is
dynamically typed. False.

(b) Java is type safe. True.

(c) Each of the following Haskell expression gives a compile-time type error, since tail is being provided a
value of the incorrect type:

tail []
tail (1,2,3)

False. (Only the second gives a type error; the first one gives a runtime error.)

4. What happens when you try the following Haskell program?

x :: Float
y :: Double
x = 3
y = 4
z = x+y

You get a type error, since + doesn’t work with two different types (Double and Float). No coercion in Haskell,
not even Float to Double. But note that Haskell isn’t troubled by x = 3! That’s ok because 3 has type
(Num t) => t.

2


