
CSE 341, Autumn 2015, Assignment 4
Octopus Interpreter

Due: Friday Oct 30, 10:00pm

The purpose of this assignment is to give you experience with writing a larger program in Haskell, and also
with writing interpreters. All your code should be in the functional part of Haskell (no monads), except for
the unit tests and for the final read-eval-print loop (Question 10).

Points: 75 points, plus up to 8 points extra credit.

Start early! This assignment doesn’t involve writing that much code, but you’ll need to understand and
extend existing Haskell code, and to understand thoroughly the semantics of closures in Racket. Plus
debugging an interpreter will be a new skill.

You can use up to 4 late days for this assignment.

Turnin: Turn in one file: OctopusInterpreter.hs, which should include all your functions and unit
tests. If you do the String extra credit problem (Question 12), also turn in your parser file. If you do
the dynamic scoping extra credit problem (Question 11), turn in another version of the interpreter called
OctopusInterpreterDynamicScope.hs.

You don’t need to turn in sample output — the unit tests are enough for those. As usual, your program should
be tastefully commented. Style counts! In particular, think about where you can use pattern matching and
higher order functions to good effect to simplify your program; and avoid unnecessary repeated computations.

Overview: The Octopus programming language is a small subset of Racket, but even though it leaves out
many of Racket’s features, it is still among the most expressive of the invertebrate programming languages.

Every Octopus expression is also a legal Racket expression, and if the expression evaluates without error
in Racket, it should also evaluate without error in Octopus and the results should be the same. The data
types in Octopus are integers, booleans, symbols, lists, and functions. There are no side effects. Functions
are defined using lambda, which has exactly the same meaning as in Racket — it creates a lexical closure.
The other special forms are quote, if, cond, let, and letrec. One important restriction is that there is
no define special form. Instead, to create and bind new variables, use let, letrec, or lambda. Another
restriction is that let, letrec, and lambda always have just one expression in the body (since there are no
side effects, having multiple forms wouldn’t be useful). Finally, lists are always proper lists — no dotted
pairs like (2 . 3).

There are two starter files, linked from the class website: OctoParser.y and
OctopusInterpreter-starter.hs. OctoParser.y is a parser for Octopus, written using the Happy
parser generator (http://www.haskell.org/happy/). Unless you do the string extra credit question, you
shouldn’t need to modify it at all. Just run the Happy parser generator from the command line:

happy OctoParser.y

This should generate a file OctoParser.hs that is the parser. (This .hs file isn’t intended to be particularly
human-readable.)

Download OctopusInterpreter-starter.hs and rename it to OctopusInterpreter.hs. Load it into
Haskell and run the first few unit tests using run, to make sure things are working OK. The interpreter will
automatically load the parser (make sure they are in the same directory).

The key things you need from the parser are the types Environment and OctoValue, and a function parse

whose type is String -> OctoValue. You’ll need to know the definition of these types in writing your
interpreter — look in OctoParser.y.

1

Experiment a bit with this. For example, parse "(+ 3 4)" should return
OctoList [OctoSymbol "+",OctoInt 3,OctoInt 4].

Then begin adding functionality to the parser, as described below. Most of the calls to the unit tests are
commented out — enable more and more of them as you add functionality. You will also need to add unit
tests for null?, not, and the primitive functions — right now there is only a test for +. The other tests are
enough to test the other functionality, although you are welcome to add more if you want.

You don’t need to do error checking in your interpreter, unless you add it for the extra credit question. (The
starter program does include a little error checking, for example for parse errors and unbound variables,
which helps with debugging.)

1. (12 points) Add new primitives for -, *, cons, car, cdr, and equal?. Add unit tests for these. To add
these primitives, write new Haskell functions octominus, octotimes, and so forth, following octoplus

as a model, and add them to the list of primitives (defined just before octoplus in the starter code).
You shouldn’t modify the eval function for this question.

2. (10 points) Write a function octoshow that turns any Octopus value (represented as data of type
OctoValue) into a string. Here are a few examples:

OctoInt 7 => "7"

OctoBool False => "#f"

OctoList [OctoInt 1, OctoInt 2, OctoInt 3] => "(1 2 3)"

OctoList [OctoSymbol "squid", OctoSymbol "clam"] => "(squid clam)"

OctoList [OctoSymbol "quote", OctoSymbol "squid"] => "’squid"

Modulo white space, parse and octoshow are inverses. Note that for lists there shouldn’t be an extra
space before the right parenthesis. (Hint: the Haskell function unwords may be useful.) For example:

octoshow $ parse "7" => "7"

octoshow $ parse "#f" => "#f"

octoshow $ parse "(1 2 3)" => "(1 2 3)"

octoshow $ parse "(+ 1 (* 2 3))" => "(+ 1 (* 2 3))"

octoshow $ parse "’(1 2 3)" => "’(1 2 3)"

octoshow $ parse "’squid" => "’squid"

You won’t encounter an OctoClosure or an OctoPrimitive in parser output — these are just used
internally in the interpreter. You can show them just as "<closure>" and "<primitive +>" (or
whatever the name of the primitive is) respectively. (You can return something more elaborate for
closures if you wish, but it’s not required.)

There are unit tests for octoshow that you should uncomment before starting on this part. (They
don’t test having extra spaces in the input, or OctoClosure — you can add some tests for those if you
want but it’s not required.)

3. (8 points) The starter interpreter includes code to handle applying primitive functions but not user
defined functions (i.e. ones written using lambda). Fill this in (search for the text TO BE WRITTEN). The
tests involving lambda should now succeed. The code for this is just one line in the sample solution,
but you might find it a bit tricky to figure out. Be sure and read the comment before the skeleton of
apply regarding what needs to be evaluated where. You just need to replace the error ... part of
the definition of apply for this question; you shouldn’t need to modify the final case of eval (which is
where apply is called from). Hint: the zip function may be handy.

After you have lambda working, the null? function should work. (It’s already defined in the global
environment.) Add unit tests for it however.

2

4. (5 points) Add code to handle the if special form. Implement this directly — this should be straight-
forward. This will involve adding a new case to the eval function. The four if tests should now
succeed.

5. (5 points) Add a function not to the global environment. This should be defined in Octopus (like
null?) rather than written as a primitive. (Search for null? and follow that as an example — do not
modify the eval function by adding a special case for not.) Add unit tests for not.

6. (5 points) Add code to handle the let special form. Recommendation: implement it directly, as you
did with if in Question 4.

An arguably more interesting approach is to define it as a derived expression in terms of lambda —
that is, the case of your eval function that handles let would produce a new expression using lambda,
and then evaluate that. However, this won’t be as useful when you get to letrec. But you should still
understand how the derived expression technique works. For example, suppose you are evaluating this
let expression:

(let ((x 5)

(y 10))

(+ x y))

You’d produce the following expression that uses lambda, and evaluate that. Notice that the lambda

takes care of all of the work of evaluating the bindings for x and y in the proper environment, making
a new environment, and evaluating the body of the let .

((lambda (x y) (+ x y)) 5 10)

7. (5 points) Add a primitive to implement an Octopus eval function. This should work like the one-
argument version of eval in Racket, in other words, the one without the namespace argument. Again
as with Racket, the expression should be evaluated in the global namespace in that case (for the
Octopus interpreter, this is stored in global_env). Hint: first evaluate the argument in the current
environment. (Defining eval as a primitive will automatically take care of doing this.) Then evaluate
the result again in the global environment. There are some unit tests that check this.

8. (10 points) Implement cond. You can assume that the last expression in the cond will always be
(else expr). For full credit, you should implement this by transforming the cond into a set of nested
if expressions, which you then evaluate. Here are some examples of translated expressions:

• (cond (else (+ 3 4))) → (+ 3 4)

• (cond ((equal? 2 3) 8) (else (+ 3 4))) → (if (equal? 2 3) 8 (+ 3 4))

• (cond ((equal? 2 3) 8) ((equal? 10 10) 100) (else (+ 3 4))) →
(if (equal? 2 3) 8 (if (equal? 10 10) 100 (+ 3 4)))

Notice how this is much like implementing this as a macro in Racket. Hint: write a helper function
cond_to_if that takes a list of cases in a cond and returns the equivalent expression.

9. (5 points) Implement letrec. You should now be able to run all the tests using recursive functions.

Hints: this should be trivial to implement by copying and modifying your code for let. In the sample
solution, both let and letrec use the same helper function eval_let_bindings that computes the
bindings for the variables in a let or letrec, so that there isn’t any duplicated code.

If you’re confused, go back and review how let works. For let, we start with the enclosing environment
of the let — let’s call this enclosing_env. Also, let’s call the variables that are bound by the let

expression let_vars. We extend enclosing_env with bindings for each of the let_vars to yield

3

extended_env. The expressions that define the let_vars are evaluated in enclosing_env. Finally,
we evaluate the expression in the body of the let in extended_env.

letrec can be implemented in exactly the same way, except that the expressions that define the
letrec_vars are evaluated in extended_env rather than enclosing_env. This may seem circular,
since we are using extended_env in defining extended_env — and it is, but it works because Haskell
is lazy.

10. (10 points) Finally, add a simple read-eval-print loop, using Haskell’s IO functions (monads). The loop
should get a line from the keyboard, parse it, evaluate it, convert it to a string using octoshow, and
print it out. Keep looping until the user types a blank line.

There is a compiled version of the Octopus interpreter on attu, if you want to try the read-eval-print
loop: invoke it from the shell using ~borning/octopus. This compiled version includes code for the
string extra credit problem (Question 12).

11. Extra Credit. (1 point) Racket (and Octopus) use static scoping. Older Lisps, and some other older
languages, use dynamic scoping. To look up a name, look in the current function, then look up the
calling stack until you find it (or fall off the end). Even though this is a major change in the semantics
of the language, it’s easy to convert your Octopus interpreter to use dynamic scoping. Do that (turn
in a separate file named OctopusInterpreterDynamicScope.hs). Include a test case that shows that
it is working. In addition, some of the existing tests will fail with dynamic scoping. In a comment at
the top of your program, indicate what your new dynamic scope test is, and which of the existing tests
fail and why.

As an example, this code will give an error with Racket and Octopus, but works with dynamic
scoping:

(let ((f (lambda (x) (+ x y))))

(let ((y 10)) (f 20)))

In Octopus, this gives an error — y is unbound in the body of f. But with dynamic scoping, it
finds the binding to 10. (There are problems and subtle bugs that arise with dynamic scoping — you
can end up with variables captured that you didn’t intend — and it’s harder for both humans and
compilers to reason about. But you should know the concept.)

12. Extra Credit. (2 points) Add a string datatype to Octopus, and add a primitive string-append

function. After this is done, you should be able to evaluate expressions like this:

(string-append)

(string-append "A" "Giant" "Squid")

To simplify this, you don’t need to handle strings with embedded double quotes (so no
"oyster\"clam"). There are commented-out unit tests for this question in the starter program al-
ready. For this extra credit problem, you’ll need to modify the parser as well as the interpeter. (You
should read the appropriate parts of Chapter 2 of the Happy parser documentation.)

13. Extra Credit. (1 point) Are there examples of using letrec that evaluate correctly in Octopus but
not in Racket? If so, give an example; if not, argue why not.

14. Extra Credit. (up to 4 points) Add an additional feature (or features) to your Racket interpreter.
Here are some suggestions, but you can also do something of your own choosing.

• It’s a nuisance to need to define functions just using letrec. Add support for define at the top
level of the read-eval-print loop.

4

• Once you add define, add support for (load "filename"), also just at the top level of the
read-eval-print loop. Naturally, a file should be able to contain further load commands as well
as function definitions.

• Add some exception handling, so that rather than just crashing, if you have an error in an
expression in the read-eval-print loop the system prints out a helpful message and continues on
with the next prompt.

5

