
2/25/14

1

CSE341: Programming Languages

Introduction To Ruby; Dynamic OOP;
"Duck Typing"

Alan Borning
Winter 2014

(slides borrowed from Dan Grossman)

The plan

•  Lecture materials may not recount every little language feature
we use
–  Thomas book (2nd edition, Chapters 1-9) quite readable

•  Can skip/skim regexps and ranges
•  Also see online library documentation [large, searchable]

•  Focus in class will be on OOP, dynamic typing, blocks, mixins

Winter 2014 2 CSE341: Programming Languages

Logistics

•  We will use Ruby 2.0.0
–  Installed on the Lab machines (Windows and linux)
–  Ruby 1.8.7 is not hugely different – should work as well,
except for unit test module

–  We’ll keep an eye out for any differences that are relevant for
this course; in the worst case you may need to upgrade

•  Installation instructions, etc. on course web page
–  Can run programs with a REPL called irb

•  Homework 7 is a Ruby warmup exercise;
Homework 8 is the Ruby project

Winter 2014 3 CSE341: Programming Languages

A Bit of History

•  Some notable examples of early object-oriented languages and
systems:
–  First object-oriented programming language: Simula I, then

Simula 67, created by Ole-Johan Dahl and Kristen Nygaard at
the Norwegian Computing Center in Oslo.

–  Smalltalk: developed at Xerox Palo Alto Research Center by
the Learning Research Group in the 1970's (Smalltalk-72,
Smalltalk-76, Smalltalk-80)

–  Today: mature language paradigm. Some significant
examples: C++, Java, C#, Python, Ruby

Winter 2014 4 CSE341: Programming Languages

Ruby
•  Pure object-oriented: all values are objects (even numbers)

•  Class-based: Every object has a class that determines behavior
–  Like Java, unlike Javascript
–  Mixins (neither Java interfaces nor C++ multiple inheritance)

•  Dynamically typed

•  Convenient reflection: Run-time inspection of objects

•  Blocks and libraries encourage lots of closure idioms

•  Syntax and scoping rules of a "scripting language"
–  Often many ways to say the same thing
–  Variables "spring to life" on use
–  Lots of support for string manipulation [we won't do this]

•  Popular for building server-side web applications (Ruby on
Rails)

Winter 2014 5 CSE341: Programming Languages

Where Ruby fits

Historical note: Smalltalk also a dynamically typed, class-based,
pure OOP language with blocks and convenient reflection

–  Smaller just-as-powerful language
–  Contrast Ruby's "why not add that" attitude

•  Ruby less elegant, more widely used

Dynamically typed OO helps identify OO's essence by not having
to discuss types

Winter 2014 6 CSE341: Programming Languages

 dynamically typed statically typed
 functional Racket Haskell
 object-oriented Ruby Java

2/25/14

2

Defining a class

[For full code details and various expression constructs, see
PosRational.rb]

Winter 2014 7 CSE341: Programming Languages

Class PosRational
 # no instance variable (field) decls
 # just assign to @foo to create field foo
 def initialize (num,den=1)
 …
 @num = num
 @den = den
 end

 def to_s… end

 def add r … end
 …
end

Using a class
•  ClassName.new(args) creates a new instance of

ClassName and calls its initialize method with args

•  Every variable holds an object (possibly the nil object)
–  Local variables (in a method) foo
–  Instance variables (fields) @foo
–  Class variables (static fields) @@foo

•  You use an object with a method call
–  Also known as a message send
–  Every object has a class, which determines its behavior

•  Examples: x.m 4 x.m1.m2(y.m3) -42.abs
–  m and m(…) are sugar for self.m and self.m(…)
–  e1 + e2 is sugar for e1.+(e2) (really!)

Winter 2014 8 CSE341: Programming Languages

Method / variable visibility

•  private: only available to object itself
•  protected: available only to code in the class or subclasses
•  public: available to all code

This is different than what the words mean in Java

•  All instance variables and class variables are private

•  Methods are public by default
–  There are multiple ways to change a method's visibility

Winter 2014 9 CSE341: Programming Languages

Some syntax / scoping gotchas
•  You create variables (including instance variables) implicitly by

assigning to them
–  So a misspelling just creates a new variable
–  Different instances of a class could have different fields

•  Newlines matter
–  Often need more syntax to put something on one line
–  Indentation is only style (not true in some languages)

•  Class names must be capitalized

•  Message sends with 0 or 1 argument don't need parentheses

•  self is a special keyword (Java's this)

Winter 2014 10 CSE341: Programming Languages

Getters and setters

•  If you want outside access to get/set instance variables, must define
methods

•  The foo= convention allows sugar via extra spaces when using the

method

•  Shorter syntax for defining getters and setters is:

•  Overall, requiring getters and setters is more uniform and more OO
–  Can change the methods later without changing clients
–  Particular form of change is subclass overriding [next lecture]

Winter 2014 11 CSE341: Programming Languages

def foo
 @foo
end

def foo= a
 @foo = a
end

x.foo = 42

x.foo

attr_writer :foo

attr_reader :foo

Top-level

•  Expressions at top-level are evaluated in the context of an
implicit "main" object with class Object

•  That is how a standalone program would "get started" rather
than requiring an object creation and method call from within irb

•  Top-level methods are added to Object, which makes them
available everywhere

Winter 2014 12 CSE341: Programming Languages

2/25/14

3

Class definitions are dynamic

•  All definitions in Ruby are dynamic

•  Example: Any code can add or remove methods on existing
classes
–  Very occasionally useful (or cute) to add your own method to

the Array class for example, but it is visible to all arrays

•  Changing a class affects even already-created instances

•  Disastrous example: Changing Fixnum's + method

•  Overall: A simple language definition where everything can be
changed and method lookup uses instance's classes

Winter 2014 13 CSE341: Programming Languages

Duck Typing

"If it walks like a duck and quacks like a duck, it's a duck"
–  Or don't worry that it may not be a duck

When writing a method you might think, "I need a Foo argument" but
really you need an object with enough methods similar to Foo's
methods that your method works

–  Embracing duck typing is always making method calls rather
than assuming/testing the class of arguments

Plus: More code reuse; very OO approach
–  What messages an object receive is all that matters

Minus: Almost nothing is equivalent
–  x+x versus x*2 versus 2*x
–  Callers may assume a lot about how callees are implemented

Winter 2014 14 CSE341: Programming Languages

Duck Typing Example

Winter 2014 15 CSE341: Programming Languages

def mirror_update pt
 pt.x = pt.x * (-1)
end

•  Natural thought: "Takes a Point object (definition not shown
here), negates the x value"
–  Makes sense, though a Point instance method more OO

•  Closer: "Takes anything with getter and setter methods for @x
instance variable and multiplies the x field by -1"

•  Closer: "Takes anything with methods x= and x and calls x= with
the result of multiplying result of x and -1

•  Duck typing: "Takes anything with method x= and x where result
of x has a * method that can take -1. Sends result of calling x
the * message with -1 and sends that result to x="

