
CSE341, Winter 2014, Ruby Introduction Summary

Disclaimer: This lecture summary is not necessarily a complete substitute for attending class, reading the
associated code, etc. It is designed to be a useful resource for students who attended class and are later
reviewing the material.

Introducing Ruby

This lecture is an introduction to Ruby. The corresponding code demonstrates many different language
features. Because the book Programming Ruby, 2nd Edition by Dave Thomas and various free online
tutorials are more than sufficient, the lecture materials may not describe in full detail every language feature
we use.

The course website provides installation and basic usage instructions for Ruby. Note in particular that we
will be using version 2.0.0 of the language. (1.8.7 will probably work as well — we will let you know if we
encounter any differences that affect the material in the course.)

Ruby Features Most Interesting for a PL Course

Ruby is a large, modern programming language with various features that make it popular. Some of these
features are useful for a course on programming-language features and semantics, whereas others are not
useful for our purposes even though they may be very useful in day-to-day programming. Our focus will
be on object-oriented programming, dynamic typing, blocks (which are almost closures), and mixins. We
briefly describe these features and some other things that distinguish Ruby here:

• Ruby is a pure object-oriented language, which means all values in the language are objects. In Java,
some values that are not objects are null, 13, true, and 4.0. In Ruby, every expression evaluates to
an object.

• Ruby is class-based : Every object is an instance of a class. An object’s class determines what methods
an object has. As in Java, you call a method “on” an object, e.g., obj.m(3,4) evaluates the variable
obj to an object and calls its m method with arguments 3 and 4. Not all object-oriented languages are
class-based; see, for example, Javascript.

• Ruby has mixins: A later lecture will describe mixins, which strike a reasonable compromise between
C++’s multiple inheritance and Java’s interfaces. Like Java, every Ruby class has one superclass, but
it can include any number of mixins, which, unlike interfaces, can define methods (not just require
their existence).

• Ruby is dynamically typed : Just as Racket allowed calling any function with any argument, Ruby
allows calling any method on any object with any arguments. If the receiver (the object on which we
call the method) does not define the method, we get a dynamic error.

• Ruby has many dynamic features: In addition to dynamic typing, Ruby allows instance variables
(Java’s fields) to be added and removed from objects and it allows methods to be added and removed
from classes while a program executes.

• Ruby has convenient reflection: Various built-in methods make it easy to discover at run-time proper-
ties about objects. As examples, every object has a method class that returns the object’s class, and
a method methods that returns an array of the object’s methods.

• Ruby has blocks and closures: Blocks are almost like closures and are used throughout Ruby libraries
for convenient higher-order programming. Indeed, it is rare in Ruby to use an explicit loop since
collection classes like Array define so many useful iterators. Ruby also has fully-powerful closures for
when you need them.
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• Ruby is a scripting language: There is no precise definition of a what makes a language a scripting
language. It means the language is engineered toward making it easy to write short programs, providing
convenient access to manipulating files and strings (topics we won’t discuss), and having less concern
for performance. Like many scripting languages, Ruby does not require that you declare variables
before using them and there are often many ways to say the same thing.

• Ruby is popular for web applications: The Ruby on Rails framework is a popular choice for developing
the server side modern web-sites.

Recall that, taken together, Haskell, Racket, Ruby, and Java, cover all four combinations of functional vs.
object-oriented and statically vs. dynamically typed.

Our focus will be on Ruby’s object-oriented nature, not on its benefits as a scripting language. We also won’t
discuss at all its support for building web applications, which is a main reason it is currently so popular. As
an object-oriented language, Ruby shares much with Smalltalk, a language that has basically not changed
since 1980. Ruby does have some nice additions, such as mixins.

Ruby is also a large language with a “why not” attitude, especially with regard to syntax. Haskell and
Racket (and Smalltalk) adhere rather strictly to certain traditional programming-language principles, such
as defining a small language with powerful features that programmers can then use to build large libraries.
Ruby often takes the opposite view. For example, there are many different ways to write an if-expression.

Objects, Classes, Methods, Variables, Etc.

The code associated with this lecture contains an example class definition for rational numbers, which is a
useful complement to the general rules described here.

Class and method definitions

Since every object has a class, we need to define classes and then create instances of them (an object of class
C is an instance of C). (Of course, Ruby also predefines many classes in its language and standard library.)
The basic syntax (we will add features as we go) for creating a class Foo with methods m1, m2, ... mn can be:

class Foo

def m1

...

end

def m2 (x,y)

...

end

...

def mn z

...

end

end

Class names must be capitalized. They include method definitions. A method can take any number of
arguments, including 0, and we have a variable for each argument. In the example above, m1 takes 0
arguments, m2 takes two arguments, and mn takes 1 argument. Not shown here are method bodies. Like
Haskell and Racket functions, a method implicitly returns its last expression. Like Java, you can use an
explicit return statement to return immediately when helpful. (It is bad style to have a return at the end
of your method since it can be implicit there.)
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Method arguments can have defaults in which case a caller can pass fewer actual arguments and the remaining
ones are filled in with defaults. If a method argument has a default, then all arguments to its right must
also have a default. An example is:

def myMethod (x,y,z=0,w="hi")

...

end

Instance variables

An object has a class, which defines its methods. It also has instance variables, which hold values (i.e.,
objects). Many languages, including Java, use the term fields instead of instance variables for the same
concept. Unlike Java, our class definition does not indicate what instance variables an instance of the class
will have. To add an instance variable to an object, you just assign to it: if the instance variable does
not already exist, it is created. All instance variables start with an @, e.g., @foo, to distinguish them from
variables local to a method. (Ruby also has class variables, which are like Java’s static fields. They are
written @@foo.)

Each object has its own instance variables. Instance variables are mutable. An expression (in a method
body) can read an instance variable with an expression like @foo and write an instance variable with an
expression @foo = newValue.

Instance variables are private to an object. There is no way to directly access an instance variable of any
other object.

Calling methods

The method call e0.m(e1, ..., en) evaluates e0, e1, ..., en to objects. It then calls the method m in the
result of e0 (as determined by the class of the result of e0), passing the results of e1, ..., en as arguments. As
for syntax, the parentheses are optional. In particular, a zero-argument call is usually written e0.m, though
e0.m() also works.

To call another method on the same object as the currently executing method, you can write self.m(...)

or just m(...). (Java works the same way except it uses the keyword this instead of self.)

In OOP, another common name for a method call is a message send. So we can say e0.m e1 sends the result
of e0 the message m with the argument that is the result of e1. This terminology is “more object-oriented”
— as a client, we do not care how the receiver (of the message) is implemented (e.g., with a method named
m) as long as it can handle the message.

Constructing an object

To create a new instance of class Foo, you write Foo.new (...) where (...) holds some number of arguments
(where, as with all method calls, the parentheses are optional and when there are zero or one arguments it
is preferred to omit them). The call to Foo.new will create a new instance of Foo and then, before Foo.new

returns, call the new object’s initialize method with all the arguments passed to Foo.new. That is, the
method initialize is special and serves the same role as Java’s constructors.

Typical behavior for initialize is to create and initialize instance variables. In fact, the normal approach
is for initialize always to create the same instance variables and for no other methods in the class to
create instance variables. But Ruby does not require this and it may be useful on occasion to violate these
conventions.

It is a run-time error to call Foo.new with a number of arguments that the initialize method for the class
cannot handle.

Expressions and Local Variables
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Most expressions in Ruby are actually method calls. Even e1 + e2 is just syntactic sugar for e1.+ e2, i.e.,
call the + method on the result of e1 with the result of e2. Another example is puts e, which prints the
result of e (after calling its to_s method to convert it to a string) and then a newline. It turns out puts

is a method in all objects (it is defined in class Object and all classes are subclasses of Object — the next
lecture discusses subclasses), so puts e is just self.puts e.

Not every expression is a method call. The most common other expression is some form of conditional. There
are various ways to write conditionals; see the example code. As the next lecture discusses, loop expressions
are rare in Ruby code.

Like instance variables, variables local to a method do not have to be declared: The first time you assign to
x in a method will create the variable.

Everything is an Object

Everything is an object, including numbers, booleans, and nil (which is often used like null in Java). For
example, -42.abs evaluates to 42 because the Fixnum class defines the method abs to compute the absolute
value and -42 is an instance of Fixnum. (Of course, this is a silly expression, but x.abs where x currently
holds -42 is reasonable.)

All objects have a nil? method, which the class of nil defines to return true but other classes define
to return false. Like in Haskell and Racket, every expression produces a result, but when no particular
result makes sense, nil is preferred style (much like Haskell’s () and Racket’s void-object). That said, it is
often convenient for methods to return self so that subsequent method calls to the same object can be put
together. For example, if the foo method returns self, then you can write x.foo(14).bar("hi") instead
of

x.foo(14)

x.bar("hi")

Some Syntax, Semantics, and Scoping To Get Used To

Ruby has a fair number of quirks that are often convenient for quickly writing useful programs but may take
some getting used to. Here are some examples; you will surely discover more.

• There are several forms of conditional expressions, including e1 if e2 (all on one line), which evaluates
e1 only if e2 is true (i.e., it reads right-to-left).

• Newlines are often significant. For example, you can write

if e1

e2

else

e3

end

But if you want to put this all on one line you need to write if e1 then e2 else e3 end. Note,
however, indentation is never significant (only a matter of style).

• Conditionals can operate on any object and treat every object as “true” with two exceptions: false

and nil.

• You can define a method with a name that ends in =, for example:

def foo= x

@blah = x * 2

end
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As expected, you can write e.foo=(17) to change e’s foo field to be 34. Better yet, you can adjust the
parentheses and spacing to write e.foo = 17. This is just syntactic sugar. It “feels” like an assignment
statement, but it is really a method call. Stylistically you do this for methods that mutate an object’s
state in some “simple” way (like setting a field).

• Where you write this in Java, you write self in Ruby.

• The methods of a class do not all have to be defined in the same place. If you write class Foo ... end

multiple times in a program, all the methods are part of class Foo. (Any repeated methods replace
earlier definitions, even for instances of the class that have already been created.)

• Remember variables (local, instance, or class) get automatically created by assignment, so if you mis-
spell a variable in an assignment, you end up just creating a different variable.

Visibility, Getters/Setters

As mentioned above, instance variables are private to an object: only method calls with that object as the
receiver can read the fields. As a result, the syntax is @foo and the self-object is implied. The syntax
self.@foo is not allowed since it is redundant and x.@foo would break the privacy rules. Notice even other
instances of the same class cannot access the instance variables. This is quite object-oriented: you can
interact with another object only by sending it messages.

Methods can have different visibilities. The default is public, which means any object can call the method.
There is also private, which like with instance variables, allows only the object itself to call the method
(from other methods in the object). In-between is protected: A protected method can be called by any
object that is an instance of the same class or any subclass of the class.

There are various ways to specify the visibility of a method. Perhaps the simplest is within the class definition
you can put public, private, or protected between method definitions. Reading top-down, the most recent
visibility specified holds for all methods until the next visibility is specified. There is an implicit public

before the first method in the class.

To make the contents of an instance variable available and/or mutable, we can easily define getter and setter
methods, which by convention we can give the same name as the instance variable. For example:

def foo

@foo

end

def foo= x

@foo = x

end

If these methods are public, now any code can access the instance variable @foo indirectly, by calling foo

or foo= (and, as noted above, calls to the latter can be written as e1.foo = e2). It often makes sense to
instead make these methods protected. The Rational class in the associated code uses protected getter
methods to good effect: The getters are needed to implement addition by another instance of Rational, but
we do not make the numerator and denominator publicly available.

The advantage of the getter/setter approach is it remains an implementation detail that these methods are
implemented as getting and setting an instance variable. We, or a subclass implementer, could change this
decision later without clients knowing. We can also omit the setter to ensure an instance variable is not
mutated except perhaps by a method of the object.

Because getter and setter methods are so common, there is shorter syntax for defining them. For example,
to define getters for instance variables @x, @y, and @z and a setter for @x, the class definition can just include:
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attr_reader :x, :y, :z

attr_writer :x

Top-Level

You can define methods, variables, etc. outside of an explicit class definition. The methods are implicitly
added to class Object, which makes them available from within any object’s methods.

Top-level expressions are evaluated in order when the program runs. So instead of Ruby specifying a main
class and method with a special name (like main), you can just create an object and call a method on it at
top-level.

Dynamic Class Definitions

A Ruby program (or a user of the REPL) can change class definitions while a Ruby program is running.
Naturally this affects all users of the class. Perhaps surprisingly, it even affects instances of the class that
have already been created. That is, if you create an instance of Foo and then add or delete methods in Foo,
then the already-created object “sees” the changes to its behavior.

This is usually dubious style, but it leads to a simpler language definition: defining classes and changing
their definitions is just a run-time operation like everything else. It can certainly break programs: If I change
or delete the + method on numbers, I would not expect many programs to keep working correctly. It can
be useful to add methods to existing classes, especially if the designer of the class did not think of a useful
helper method.

Duck Typing

Duck typing refers to the expression, “If it walks like a duck and quacks like a duck, then it’s a duck” though
a better conclusion might be, “then there is no reason to concern yourself with the possibility that it might
not be a duck.” In Ruby, this refers to the idea that the class of an object (e.g., “Duck”) passed to a method
is not important so long as the object can respond to all the messages it is expected to (e.g., “walk to x” or
“quackNow”).

For example, consider this method:

def mirror_update pt

pt.x = pt.x * -1

end

It is natural to view this as a method that must take an instance of a particular class Point (not shown
here) since it uses methods x and x= defined in it. And the x getter must return a number since the result
of pt.x is sent the * message with -1 for multiplication.

But this method is more generally useful. It is not necessary for pt to be an instance of Point provided it
has methods x and x=.

Moreover, the x and x= methods need not be a getter and setter for an instance variable @x.

Even more generally, we do not need the x method to return a number. It just has to return some object
that can respond to the * message with argument -1.

Duck typing can make code more reusable, allowing clients to make “fake ducks” and still use your code. In
Ruby, duck typing basically “comes for free” as long you do not explicitly check that arguments are instances
of particular classes using methods like instance_of? or is_a? (see next lecture).

Duck typing has disadvantages. The most lenient specification of how to use a method ends up describing the
whole implementation of a method, in particular what messages it sends to what objects. If our specification

6



reveals all that, then almost no variant of the implementation will be equivalent. For example, if we know
i is a number (and ignoring clients redefining methods in the classes for numbers), then we can replace i+i

with i*2 or 2*i. But if we just assume i can receive the + message with itself as an argument, then we
cannot do these replacements since i may not have a * method (breaking i*2) or it may not be the sort of
object that 2 expects as an argument to * (breaking 2*i).
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