
2/25/14

1

CSE341: Programming Languages

Ruby:
Blocks & Procs;

Inheritance & Overriding

Alan Borning
Winter 2014

This lecture

Two separate topics

•  Ruby's approach to almost-closures (blocks) and closures (Procs)

–  Convenient to use; unusual approach
–  Used throughout large standard library

•  Explicit loops rare
•  Instead of a loop, go find a useful iterator

•  Subclasses, inheritance, and overriding
–  The essence of OOP
–  Not unlike in Java, but worth studying from PL perspective and

in a more dynamic language

Winter 2014 2 CSE341: Programming Languages

Blocks

Blocks are probably Ruby's strangest feature compared to other PLs

–  Normal: easy way to pass anonymous functions for all the
reasons we have been studying

–  Normal: Blocks can take 0 or more arguments

–  Strange: Can send 0 or 1 block with any message send

–  Strange: Callee does not have a name for the block
•  Calls it with yield, yield 42, yield (3,5), etc.
•  Can ask block_given? but rarely used in practice

(usually assume a block is given if expected, or that a
block's presence is implied by other arguments)

Winter 2014 3 CSE341: Programming Languages

Examples

•  Rampant use of blocks in standard library
–  Classes define iterators; don't write your own loops
–  Most of these examples happen to have 0 "regular" arguments

•  Easy to write your own methods that use blocks

Winter 2014 4 CSE341: Programming Languages

3.times { puts "hi" }
[4,6,8].each { puts "hi" }
[4,6,8].each { |x| puts x * 2 }
[4,6,8].map { |x| x * 2 }
[4,6,8].any? { |x| x > 7 } # block optional
[4,6,8].inject(foo) {|acc,elt| … }

def silly a
 (yield a) + (yield 42)
end

x.silly 5 { |b| b*2 }

Blocks are "second-class"
All a method can do with a block is yield to it (i.e., call it)

–  Can't return it, store it in an object (e.g., for a callback), etc.
–  But can also turn blocks into real closures (next slide)

But one block can call another block via yield
–  From example MyList class in blocks.rb (though better

in Ruby to use arrays as lists than define your own)

Winter 2014 5 CSE341: Programming Languages

def map
 if @tail.nil?
 MyList.new(yield(@head), nil)
 else
 MyList.new(yield(@head),
 @tail.map {|x| yield x})
 end
end

First-class closures
•  Implicit block arguments and yield is often sufficient

•  But when you want a closure you can return, store, etc.:
–  The built-in Proc class
–  lambda method of Object takes a block and makes a Proc

•  Also can do it with "& arg” (shown in block_proc.rb)
–  Instances of Proc have a method call

Winter 2014 6 CSE341: Programming Languages

def map_p proc
 if @tail.nil?
 MyList.new(proc.call(@head),
 nil)
 else
 MyList.new(proc.call(@head),
 @tail.map proc)
 end
end

xs.map_p
 (lambda{|x| … })

2/25/14

2

Subclassing

•  A class definition has a superclass (Object if not specified)

•  The superclass affects the class definition:
–  Class inherits all method definitions from superclass
–  But class can override method definitions as desired

•  Unlike Java:
–  No such thing as "inheriting fields" since all objects create

instance variables by assigning to them
–  Subclassing has nothing to do with a (non-existent) type

system: can still pass any object to any method

Winter 2014 7 CSE341: Programming Languages

class ColorPoint < Point …

Example (to be continued)

Winter 2014 8 CSE341: Programming Languages

class Point
 attr_reader :x, :y
 attr_writer :x, :y
 def initialize(x,y)
 @x = x
 @y = y
 end
 def distFromOrigin
 # direct field access
 Math.sqrt(@x*@x
 + @y*@y)
 end
 def distFromOrigin2
 # use getters
 Math.sqrt(x*x
 + y*y)
 end
end

class ColorPoint < Point
 attr_reader :color
 attr_writer :color
 def initialize(x,y,c)
 super(x,y)
 @color = c
 end
end

An object has a class

•  Using these methods is usually non-OOP style
–  Disallows other things that "act like a duck"
–  Nonetheless semantics is that an instance of ColorPoint

"is a" Point but is not an "instance of" Point
–  Java's instanceof is like Ruby's is_a?

Winter 2014 9 CSE341: Programming Languages

p = Point.new(0,0)
cp = ColorPoint.new(0,0,"red")
p.class # Point
p.class.superclass # Object
cp.class # ColorPoint
cp.class.superclass # Point
cp.class.superclass.superclass # Object
cp.is_a? Point # true
cp.instance_of? Point # false
cp.is_a? ColorPoint # true
cp.instance_of? ColorPoint # true

Why subclass

•  Instead of creating ColorPoint, could add methods to Point
–  That could mess up other users and subclassers of Point

Winter 2014 10 CSE341: Programming Languages

class Point
 attr_reader :color
 attr_writer :color
 def initialize(x,y,c="clear")
 @x = x
 @y = y
 @color = c
 end
end

Why subclass
•  Instead of subclassing Point, could copy/paste the methods

–  Means the same thing if you don't use methods like is_a?
and superclass, but of course code reuse is nice

Winter 2014 11 CSE341: Programming Languages

class ColorPoint
 attr_reader :x, :y, :color
 attr_writer :x, :y, :color
 def initialize(x,y,c="clear")

 …
 end
 def distFromOrigin
 Math.sqrt(@x*@x + @y*@y)
 end
 def distFromOrigin2
 Math.sqrt(x*x + y*y)
 end
end

Why subclass
•  Instead of subclassing Point, could use a Point instance variable

–  Define methods to send same message to the Point
–  Often OOP programmers overuse subclassing (often

composition is better)
–  But for ColorPoint, subclassing makes sense: less work and

can use a ColorPoint wherever code expects a Point

Winter 2014 12 CSE341: Programming Languages

class ColorPoint
 attr_reader :color
 attr_writer :color
 def initialize(x,y,c="clear")

 @pt = Point.new(x,y)
 @color = c
 end
 def x
 @pt.x
 end
 …
end

2/25/14

3

Overriding
•  ThreeDPoint is more interesting than ColorPoint because it

overrides distFromOrigin and distFromOrigin2
–  Gets code reuse, but highly disputable if it is appropriate to

say a ThreeDPoint "is a" Point
–  Still just avoiding copy/paste

Winter 2014 13 CSE341: Programming Languages

class ThreeDPoint < Point
 …
 def initialize(x,y,z)

 super(x,y)
 @z = z
 end
 def distFromOrigin # distFromOrigin2 similar
 d = super
 Math.sqrt(d*d + @z*@z)
 end
 …
end

So far…

•  With examples so far, objects are not so different from closures
–  Multiple methods rather than just "call me"
–  Explicit instance variables rather than whatever is environment

where function is defined
–  Inheritance avoids helper functions or code copying
–  "Simple" overriding just replaces methods

•  But there is a big difference (that you learned in Java):

Overriding can make a method define in the superclass
 call a method in the subclass

–  The essential difference of OOP, studied carefully next lecture

Winter 2014 14 CSE341: Programming Languages

Example: Equivalent except constructor

Winter 2014 15 CSE341: Programming Languages

class PolarPoint < Point
 def initialize(r,theta)
 @r = r
 @theta = theta
 end
 def x
 @r * Math.cos(@theta)
 end
 def y
 @r * Math.sin(@theta)
 end
 def distFromOrigin
 @r
 end
 …
end

•  Also need to define x= and y=
(see blocks_inheritance.rb)

•  Key punchline:
distFromOrigin2, defined
in Point, "already works"

–  Why: calls to self are
resolved in terms of the
object's class

def distFromOrigin2
 Math.sqrt(x*x+y*y)
end

