
CSE 341 : Programming Languages

More Racket Intro

Zach Tatlock
Spring 2014

Delayed evaluation

For each language construct, the semantics specifies when
subexpressions get evaluated. In ML, Racket, Java, C:

–  Function arguments are eager (call-by-value)
•  Evaluated once before calling the function

–  Conditional branches are not eager

It matters: calling factorial-bad never terminates:

2

(define (my-if-bad x y z)
 (if x y z))

(define (factorial-bad n)
 (my-if-bad (= n 0)
 1
 (* n (factorial-bad (- n 1)))))

Thunks delay

We know how to delay evaluation: put expression in a function!
–  Thanks to closures, can use all the same variables later

A zero-argument function used to delay evaluation is called a thunk
–  As a verb: thunk the expression

This works (but it is silly to wrap if like this):

3

(define (my-if x y z)
 (if x (y) (z)))

(define (fact n)
 (my-if (= n 0)
 (lambda() 1)
 (lambda() (* n (fact (- n 1))))))

The key point

•  Evaluate an expression e to get a result:

•  A function that when called, evaluates e and returns result
–  Zero-argument function for “thunking”

•  Evaluate e to some thunk and then call the thunk

•  Next: Powerful idioms related to delaying evaluation and/or
avoided repeated or unnecessary computations
–  Some idioms also use mutation in encapsulated ways

4

 e

(lambda () e)

 (e)

Avoiding expensive computations
Thunks let you skip expensive computations if they are not needed

Great if take the true-branch:

But worse if you end up using the thunk more than once:

In general, might not know many times a result is needed
 5

(define (f th)
 (if (…) 0 (… (th) …)))

(define (f th)
 (… (if (…) 0 (… (th) …))
 (if (…) 0 (… (th) …))
 …
 (if (…) 0 (… (th) …))))

Best of both worlds

Assuming some expensive computation has no side effects, ideally
we would:

–  Not compute it until needed
–  Remember the answer so future uses complete immediately

Called lazy evaluation

Languages where most constructs, including function arguments,
work this way are lazy languages

–  Haskell

Racket predefines support for promises, but we can make our own
–  Thunks and mutable pairs are enough

6

Delay and force

7

(define (my-delay th)
 (mcons #f th))

(define (my-force p)
 (if (mcar p)

 (mcdr p)
 (begin (set-mcar! p #t)

 (set-mcdr! p ((mcdr p)))
 (mcdr p))))

 An ADT represented by a mutable pair

•  #f in car means cdr is unevaluated thunk
–  Really a one-of type: thunk or result-of-thunk

•  Ideally hide representation in a module

Using promises

8

(define (f p)
 (… (if (…) 0 (… (my-force p) …))
 (if (…) 0 (… (my-force p) …))
 …
 (if (…) 0 (… (my-force p) …))))

(f (my-delay (lambda () e)))

Lessons From Example

See code file for example that does multiplication using a very slow
addition helper function

•  With thunking second argument:
–  Great if first argument 0
–  Okay if first argument 1
–  Worse otherwise

•  With precomputing second argument:
–  Okay in all cases

•  With thunk that uses a promise for second argument:
–  Great if first argument 0
–  Okay otherwise

9

Streams

•  A stream is an infinite sequence of values
–  So cannot make a stream by making all the values
–  Key idea: Use a thunk to delay creating most of the sequence
–  Just a programming idiom

A powerful concept for division of labor:
–  Stream producer knows how create any number of values
–  Stream consumer decides how many values to ask for

Some examples of streams you might (not) be familiar with:
–  User actions (mouse clicks, etc.)
–  UNIX pipes: cmd1 | cmd2 has cmd2 “pull” data from cmd1
–  Output values from a sequential feedback circuit

10

Using streams

We will represent streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:
'(next-answer . next-thunk)

So given a stream s, the client can get any number of elements

–  First: (car (s))
–  Second: (car ((cdr (s))))
–  Third: (car ((cdr ((cdr (s))))))
(Usually bind (cdr (s)) to a variable or pass to a recursive
function)

11

Example using streams

This function returns how many stream elements it takes to find
one for which tester does not return #f

–  Happens to be written with a tail-recursive helper function

–  (stream) generates the pair
–  So recursively pass (cdr pr), the thunk for the rest of the

infinite sequence

12

(define (number-until stream tester)
 (letrec ([f (lambda (stream ans)
 (let ([pr (stream)])
 (if (tester (car pr))
 ans
 (f (cdr pr) (+ ans 1)))))])
 (f stream 1)))

Streams

Coding up a stream in your program is easy
–  We will do functional streams using pairs and thunks

Let a stream be a thunk that when called returns a pair:
'(next-answer . next-thunk)

Saw how to use them, now how to make them…

–  Admittedly mind-bending, but uses what we know

13

Making streams
•  How can one thunk create the right next thunk? Recursion!

–  Make a thunk that produces a pair where cdr is next thunk
–  A recursive function can return a thunk where recursive call

does not happen until thunk is called

14

(define ones (lambda () (cons 1 ones)))

(define nats
 (letrec ([f (lambda (x)
 (cons x (lambda () (f (+ x 1)))))])
 (lambda () (f 1))))

(define powers-of-two
 (letrec ([f (lambda (x)
 (cons x (lambda () (f (* x 2)))))])
 (lambda () (f 2))))

Getting it wrong
•  This uses a variable before it is defined

•  This goes into an infinite loop making an infinite-length list

•  This is a stream: thunk that returns a pair with cdr a thunk

15

(define ones (lambda () (cons 1 ones)))
(define (ones) (cons 1 ones))

(define ones-really-bad (cons 1 ones-really-bad))

(define ones-bad (lambda () cons 1 (ones-bad)))
(define (ones-bad) (cons 1 (ones-bad)))

Memoization

•  If a function has no side effects and does not read mutable
memory, no point in computing it twice for the same arguments
–  Can keep a cache of previous results
–  Net win if (1) maintaining cache is cheaper than recomputing

and (2) cached results are reused

•  Similar to promises, but if the function takes arguments, then
there are multiple “previous results”

•  For recursive functions, this memoization can lead to
exponentially faster programs
–  Related to algorithmic technique of dynamic programming

16

How to do memoization: see example

•  Need a (mutable) cache that all calls using the cache share
–  So must be defined outside the function(s) using it

•  See code for an example with Fibonacci numbers

–  Good demonstration of the idea because it is short, but, as
shown in the code, there are also easier less-general ways
to make fibonacci efficient

–  (An association list (list of pairs) is a simple but sub-optimal
data structure for a cache; okay for our example)

17

assoc

•  Example uses assoc, which is just a library function you could
look up in the Racket reference manual:

(assoc v lst) takes a list of pairs and locates the first
element of lst whose car is equal to v according to is-
equal?. If such an element exists, the pair (i.e., an element of
lst) is returned. Otherwise, the result is #f.

•  Returns #f for not found to distinguish from finding a pair with
#f in cdr

18

