
CSE 341 : Programming Languages

Lecture 4
Records, Datatypes, Case Expressions

Zach Tatlock
Spring 2014

The Benefits of Purity

2

Consider this impure code: static int x = 0

int foo(int y) {

 x++;
 return x + y;

}

What are the results of following calls?
 f(0); f(0); f(0); . . .

Is this weird?
How does it compare to functions in math?
How does it affect reasoning?

Functional Data Structures
“… functional data structures are expected to be
more flexible than their imperative counterparts.
In particular, when we update an imperative
data structure we typically accept that the old
version of the data structure will no longer be
available, but, when we update a functional data
structure, we expect that both the old and new
versions of the data structure will be available
for further processing.”

Purely Functional Data Structures
Chris Okasaki

3

Functional Data Structures

4

Why have impurity?

5

It is useful:
 - printing
 - file I/O
 - time efficiency
 - space efficiency
 - exceptions
 - divergence

Five different things
1.  Syntax: How do you write language constructs?

2.  Semantics: What do programs mean? (Evaluation rules)

3.  Idioms: What are typical patterns for using language features to
express your computation?

4.  Libraries: What facilities does the language (or a well-known
project) provide “standard”? (E.g., file access, data structures)

5.  Tools: What do language implementations provide to make
your job easier? (E.g., REPL, debugger, code formatter, …)

–  Not actually part of the language

These are 5 separate issues
–  In practice, all are essential for good programmers
–  Many people confuse them, but shouldn’t

6

Our Focus

This course focuses on semantics and idioms

•  Syntax is usually uninteresting

–  A fact to learn, like “The American Civil War ended in 1865”
–  People obsess over subjective preferences

•  Libraries and tools crucial, but often learn new ones “on the job”
–  We are learning semantics and how to use that knowledge

to understand all software and employ appropriate idioms
–  By avoiding most libraries/tools, our languages may look

“silly” but so would any language used this way

7

How to build bigger types

•  Already know:
–  Have various base types like int bool unit char
–  Ways to build (nested) compound types: tuples, lists, options

•  Today: more ways to build compound types

•  First: 3 most important type building blocks in any language
–  “Each of”: A t value contains values of each of t1 t2 … tn
–  “One of”: A t value contains values of one of t1 t2 … tn
–  “Self reference”: A t value can refer to other t values
Remarkable: A lot of data can be described with just these
building blocks

Note: These are not the common names for these concepts

8

Examples

•  Tuples build each-of types
–  int * bool contains an int and a bool

•  Options build one-of types
–  int option contains an int or it contains no data

•  Lists use all three building blocks
–  int list contains an int and another int list or it

contains no data

•  And of course we can nest compound types
–  ((int * int) option) * (int list list)) option

9

Rest of this Lecture

•  Another way to build each-of types in ML
–  Records: have named fields
–  Connection to tuples and idea of syntactic sugar

•  A way to build and use our own one-of types in ML
–  For example, a type that contains an int or a string
–  Will lead to pattern-matching, one of ML’s coolest and

strangest-to-Java-programmers features

•  Later in course: How OOP does one-of types
–  Key contrast with procedural and functional programming

10

Records

Record values have fields (any name) holding values

Record types have fields (and name) holding types

The order of fields in a record value or type never matters
–  REPL alphabetizes fields just for consistency

Building records:

Accessing components:

(Evaluation rules and type-checking as expected)
11

 {f1 = v1, …, fn = vn}

 {f1 : t1, …, fn : tn}

 {f1 = e1, …, fn = en}

 #myfieldname e

Example

Evaluates to

And has type

If some expression such as a variable x has this type, then get
fields with:

Note we did not have to declare any record types

–  The same program could also make a
 {id=true,ego=false} of type {id:bool,ego:bool}

12

 {name = "Amélie", id = 41123 - 12}

 {id = 41111, name = "Amélie"}

 {id : int, name : string}

 #id x #name x

By name vs. by position

•  Little difference between (4,7,9) and {f=4,g=7,h=9}
–  Tuples a little shorter
–  Records a little easier to remember “what is where”
–  Generally a matter of taste, but for many (6? 8? 12?) fields,

a record is usually a better choice

•  A common decision for a construct’s syntax is whether to refer
to things by position (as in tuples) or by some (field) name (as
with records)
–  A common hybrid is like with Java method arguments (and

ML functions as used so far):
•  Caller uses position
•  Callee uses variables
•  Could totally do it differently; some languages have

13

14

The truth about tuples

Previous lecture gave tuples syntax, type-checking rules, and
evaluation rules

But we could have done this instead:

–  Tuple syntax is just a different way to write certain records
–  (e1,…,en) is another way of writing {1=e1,…,n=en}
–  t1*…*tn is another way of writing {1:t1,…,n:tn}
–  In other words, records with field names 1, 2, …

In fact, this is how ML actually defines tuples
–  Other than special syntax in programs and printing, they

don’t exist
–  You really can write {1=4,2=7,3=9}, but it’s bad style
 15

Syntactic sugar

“Tuples are just syntactic sugar for
records with fields named 1, 2, … n”

•  Syntactic: Can describe the semantics entirely by the
corresponding record syntax

•  Sugar: They make the language sweeter J

Will see many more examples of syntactic sugar
–  They simplify understanding the language
–  They simplify implementing the language
Why? Because there are fewer semantics to worry about even
though we have the syntactic convenience of tuples

Another example we saw: andalso and orelse vs. if then else
16

Datatype bindings
A “strange” (?) and totally awesome (!) way to make one-of types:

–  A datatype binding

17

datatype mytype = TwoInts of int * int
 | Str of string
 | Pizza

•  Adds a new type mytype to the environment
•  Adds constructors to the environment: TwoInts, Str, and Pizza
•  A constructor is (among other things), a function that makes

values of the new type (or is a value of the new type):
–  TwoInts : int * int -> mytype
–  Str : string -> mytype
–  Pizza : mytype

The values we make

•  Any value of type mytype is made from one of the constructors
•  The value contains:

−  A “tag” for “which constructor” (e.g., TwoInts)
−  The corresponding data (e.g., (7,9))

−  Examples:
−  TwoInts(3+4,5+4) evaluates to TwoInts(7,9)
−  Str(if true then “hi” else “bye”) evaluates to

Str(“hi”)
−  Pizza is a value

18

datatype mytype = TwoInts of int * int
 | Str of string
 | Pizza

Using them

So we know how to build datatype values; need to access them

There are two aspects to accessing a datatype value
1.  Check what variant it is (what constructor made it)
2.  Extract the data (if that variant has any)

Notice how our other one-of types used functions for this:
•  null and isSome check variants
•  hd, tl, and valOf extract data (raise exception on wrong variant)

ML could have done the same for datatype bindings
–  For example, functions like “isStr” and “getStrData”
–  Instead it did something better

19

Case
ML combines the two aspects of accessing a one-of value with a
case expression and pattern-matching

–  Pattern-matching much more general/powerful (lecture 5)

Example:

•  A multi-branch conditional to pick branch based on variant
•  Extracts data and binds to variables local to that branch
•  Type-checking: all branches must have same type
•  Evaluation: evaluate between case … of and the right branch

20

fun f x = (* f has type mytype -> int *)
 case x of
 Pizza => 3
 | TwoInts(i1,i2) => i1+i2
 | Str s => String.size s

Patterns

In general the syntax is:

For today, each pattern is a constructor name followed by the right
number of variables (i.e., C or C x or C(x,y) or …)

–  Syntactically most patterns (all today) look like expressions
–  But patterns are not expressions

•  We do not evaluate them
•  We see if the result of e0 matches them

21

 case e0 of
 p1 => e1
 | p2 => e2
 …
 | pn => en

Why this way is better

0. You can use pattern-matching to write your own testing and
data-extractions functions if you must

–  But do not do that on your homework

1.  You cannot forget a case (inexhaustive pattern-match warning)

2.  You cannot duplicate a case (a type-checking error)

3.  You will not forget to test the variant correctly and get an
exception (like hd [])

4.  Pattern-matching can be generalized and made more powerful,
leading to elegant and concise code

22

