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Modules for Namespace Management

We start by showing how ML modules can be used to separate bindings into different namespaces. We then
build on this material to cover the much more interesting and important topic of using modules to hide
bindings and types.

To learn the basics of ML, pattern-matching, and functional programming, we have written small programs
that are just a sequence of bindings. For larger programs, we want to organize our code with more structure.
In ML, we can use structures to define modules that contain a collection of bindings. At its simplest, you can
write structure Name = struct bindings end where Name is the name of your structure (you can pick
anything; capitalization is a convention) and bindings is any list of bindings, containing values, functions,
exceptions, datatypes, and type synonyms. Inside the structure you can use earlier bindings just like we
have been doing “at top-level” (i.e., outside of any module). Outside the structure, you refer to a binding b
in Name by writing Name.b. We have already been using this notation to use functions like List.foldl; now
you know how to define your own structures.

Though we will not do so in our examples, you can nest structures inside other structures to create a tree-
shaped hierarchy. But in ML, modules are not expressions: you cannot define them inside of functions, store
them in tuples, pass them as arguments, etc.

If in some scope you are using many bindings from another structure, it can be inconvenient to write
SomeLongStructureName.foo many times. Of course, you can use a val-binding to avoid this, e.g.,

val foo = SomeLongStructureName.foo, but this technique is ineffective if we are using many different
bindings from the structure (we would need a new variable for each) or for using constructor names from the
structure in patterns. So ML allows you to write open SomeLongStructureName, which provides “direct”
access (you can just write foo) to any bindings in the module that are mentioned in the module’s signature.
The scope of an open is the rest of the enclosing structure (or the rest of the program at top-level).

A common use of open is to write succinct testing code for a module outside the module itself. Other uses
of open are often frowned upon because it may introduce unexpected shadowing, especially since different
modules may reuse binding names. For example, a list module and a tree module may both have functions
named map.

Signatures

So far, structures are providing just namespace management, a way to avoid different bindings in different
parts of the program from shadowing each other. Namespace management is very useful, but not very
interesting. Much more interesting is giving structures signatures, which are types for modules. They let us
provide strict interfaces that code outside the module must obey. ML has several ways to do this with subtly



different syntax and semantics; we just show one way to write down an explicit signature for a module. Here
is an example signature definition and structure definition that says the structure MyMathLib must have the
signature MATHLIB:

signature MATHLIB =

sig

val fact : int -> int
val half_pi : real

val doubler : int -> int
end

structure MyMathLib :> MATHLIB =
struct
fun fact x =

if x=0

then 1

else x * fact (x - 1)

val half_pi = Math.pi / 2.0

fun doubler y =y + y
end

Because of the :> MATHLIB, the structure MyMathLib will type-check only if it actually provides everything the
signature MATHLIB claims it does and with the right types. Signatures can also contain datatype, exception,
and type bindings. Because we check the signature when we compile MyMathLib, we can use this information
when we check any code that uses MyMathLib. In other words, we can just check clients assuming that the
signature is correct.

Hiding Things

Before learning how to use ML modules to hide implementation details from clients, let’s remember that
separating an interface from an implementation is probably the most important strategy for building correct,
robust, reusable programs. Moreover, we can already use functions to hide implementations in various ways.
For example, all 3 of these functions double their argument, and clients (i.e., callers) would have no way to
tell if we replaced one of the functions with a different one:

fun doublel x = x + x

fun double2 x = 2
val y = 2
fun double3 x = x *x y

Another feature we use for hiding implementations is defining functions locally inside other functions. We
can later change, remove, or add locally defined functions knowing the old versions were not relied on by any
other code. From an engineering perspective, this is a crucial separation of concerns. I can work on improving
the implementation of a function and know that I am not breaking any clients. Conversely, nothing clients
can do can break how the functions above work.

But what if you wanted to have two top-level functions that code in other modules could use and have both
of them use the same hidden functions? There are ways to do this (e.g., create a record of functions), but it
would be convenient to have some top-level functions that were “private” to the module. In ML, there is no



“private” keyword like in other languages. Instead, you use signatures that simply mention less: anything
not explicitly in a signature cannot be used from the outside. For example, if we change the signature above
to:

signature MATHLIB =
sig

val fact : int -> int
val half_pi : real
end

then client code cannot call MyMathLib.doubler. The binding simply is not in scope, so no use of it will
type-check. In general, the idea is that we can implement the module however we like and only bindings
that are explicitly listed in the signature can be called directly by clients.

Introducing our extended example

The rest of our module-system study will use as an example a small module that implements rational
numbers. While a real library would provide many more features, ours will just support creating fractions,
adding two fractions, and converting fractions to strings. Our library intends to (1) prevent denominators
of zero and (2) keep fractions in reduced form (3/2 instead of 9/6 and 4 instead of 4/1). While negative
fractions are fine, internally the library never has a negative denominator (—3/2 instead of 3/ — 2 and 3/2
instead of —3/—2). The structure below implements all these ideas, using the helper function reduce, which
itself uses ged, for reducing a fraction.

Our module maintains invariants, as seen in the comments near the top of the code. These are properties of
fractions that all the functions both assume to be true and guarantee to keep true. If one function violates the
invariants, other functions might do the wrong thing. For example, the gcd function is incorrect for negative
arguments, but because denominators are never negative, gcd is never called with a negative argument.

structure Rationall =
struct
(* Invariant 1: all denominators > O
Invariant 2: rationals kept in reduced form, including that
a Frac never has a denominator of 1 *)
datatype rational = Whole of int | Frac of int*int
exception BadFrac

(* gcd and reduce help keep fractions reduced,
but clients need not know about them *)
(* they _assume_ their inputs are not negative *)
fun ged (x,y) =
if x=y
then x
else if x <y
then gcd(x,y-x)
else gcd(y,x)

fun reduce r =
case r of
Whole _ =>r



| Frac(x,y) =>

if x=0

then Whole 0

else let val d = gcd(abs x,y) in (* using invariant 1 *)
if d=y
then Whole(x div d)
else Frac(x div d, y div d)

end

(* when making a frac, we ban zero denominators *)
fun make_frac (x,y) =
ify=20
then raise BadFrac
else if y < 0
then reduce(Frac("x,”y))
else reduce(Frac(x,y))

(* using math properties, both invariants hold of the result
assuming they hold of the arguments *)
fun add (ri1,r2) =
case (r1,r2) of
(Whole(i),Whole(j))  => Whole(i+j)

| (Whole(i),Frac(j,k)) => Frac(j+k=i,k)

| (Frac(j,k),Whole(i)) => Frac(j+k*i,k)

| (Frac(a,b),Frac(c,d)) => reduce (Frac(axd + b*c, b*d))

(* given invariant, prints in reduced form *)
fun toString r =

case r of
Whole i => Int.toString i
| Frac(a,b) => (Int.toString a) ~ "/" ~ (Int.toString b)

end

Signatures for Our Example

Let us now try to give our example module a signature such that clients can use it but not violate its
invariants.

Since reduce and gcd are helper functions that we do not want clients to rely on or misuse, one natural
signature would be as follows:

signature RATIONAL_A =

sig

datatype rational = Frac of int * int | Whole of int
exception BadFrac

val make_frac : int * int -> rational

val add : rational * rational -> rational

val toString : rational -> string

end



To use this signature to hide gcd and reduce, we can just change the first line of the structure definition
above to structure Rationall :> RATIONAL_A.

While this approach ensures clients do not call gcd or reduce directly (since they “do not exist” outside the
module), this is not enough to ensure the bindings in the module are used correctly. What “correct” means
for a module depends on the specification for the module (not the definition of the ML language), so let’s
be more specific about some of the desired properties of our library for rational numbers:

e Property: toString always returns a string representation in reduced form
e Property: No code goes into an infinite loop
e Property: No code divides by zero

e Property: There are no fractions with denominators of 0

The properties are externally visible; they are what we promise clients. In contrast, the invariants are
internal; they are facts about the implementation that help ensure the properties. The code above maintains
the invariants and relies on them in certain places to ensure the properties, notably:

e gcd will violate the properties if called with an arguments < 0, but since we know denominators are
> 0, reduce can pass denominators to gcd without concern.

e toString and most cases of add do not need to call reduce because they can assume their arguments
are already in reduced form.

e add uses the property of mathematics that the product of two positive numbers is positive, so we know
a non-positive denominator is not introduced.

Unfortunately, under signature RATIONAL_A, clients must still be trusted not to break the properties and in-

variants! Because the signature exposed the definition of the datatype binding, the ML type system will not

prevent clients from using the constructors Frac and Whole directly, bypassing all our work to establish and

preserve the invariants. Clients could make “bad” fractions like Rational .Frac(1,0), Rational.Frac(3,72),
or Rational.Frac(9,6), any of which could then end up causing gcd or toString to misbehave according

to our specification. While we may have intended for the client only to use make_frac, add, and toString,

our signature allows more.

A natural reaction would be to hide the datatype binding by removing the line

datatype rational = Frac of int * int | Whole of int. While this is the right intuition, the result-
ing signature makes no sense and would be rejected: it repeatedly mentions a type rational that is not
known to exist. What we want to say instead is that there is a type rational but clients cannot know
anything about what the type is other than it exists. In a signature, we can do just that with an abstract
type, as this signature shows:

signature RATIONAL_B =

sig

type rational (* type now abstract *)
exception BadFrac

val make_frac : int * int -> ratiomal
val add : rational * rational -> rational
val toString : rational -> string

end



(Of course, we also have to change the first line of the structure definition to use this signature instead. That
is always true, so we will stop mentioning it.)

This new feature of abstract types, which makes sense only in signatures, is exactly what we want. It lets
our module define operations over a type without revealing the implementation of that type. The syntax is
just to give a type binding without a definition. The implementation of the module is unchanged; we are
simply changing how much information clients have.

Now, how can clients make rationals? Well, the first one will have to be made with make_frac. After that,
more rationals can be made with make_frac or add. There is no other way, so thanks to the way we wrote
make_frac and add, all rationals will always be in reduced form with a positive denominator.

What RATIONAL_B took away from clients compared to RATIONAL_A is the constructors Frac and Whole. So
clients cannot create rationals directly and they cannot pattern-match on rationals. They have no idea how
they are represented internally. They do not even know rational is implemented as a datatype.

Abstract types are a Really Big Deal in programming.

A Cute Twist: Expose the Whole function

By making the rational type abstract, we took away from clients the Frac and Whole constructors. While
this was crucial for ensuring clients could not create a fraction that was not reduced or had a non-positive
denominator, only the Frac constructor was problematic. Since allowing clients to create whole numbers
directly cannot violate our specification, we could add a function like:

fun make_whole x = Whole x

to our structure and val make_whole : int -> rational to our signature. But this is unnecessary function
wrapping; a shorter implementation would be:

val make_whole = Whole

and of course clients cannot tell which implementation of make_whole we are using. But why create a new
binding make_whole that is just the same thing as Whole? Instead, we could just export the constructor as
a function with this signature and no changes or additions to our structure:

signature RATIONAL_C =

sig

type rational (* type still abstract *)

exception BadFrac

val Whole : int -> rational (* client knows only that Whole is a function *)
val make_frac : int * int -> ratiomal

val add : rational * rationmal -> rational

val toString : rational -> string

end

This signature tells clients there is a function bound to Whole that takes an int and produces a rational.
That is correct: this binding is one of the things the datatype binding in the structure creates. So we are
exposing part of what the datatype binding provides: that rational is a type and that Whole is bound to
a function. We are still hiding the rest of what the datatype binding provides: the Frac constructor and
pattern-matching with Frac and Whole.



Rules for Signature Matching

So far, our discussion of whether a structure “should type-check” given a particular signature has been rather
informal. Let us now enumerate more precise rules for what it means for a structure to match a signature.
(This terminology has nothing to do with pattern-matching.) If a structure does not match a signature
assigned to it, then the module does not type-check. A structure Name matches a signature BLAH if:

e For every val-binding in BLAH, Name must have a binding with that type or a more general type (e.g.,
the implementation can be polymorphic even if the signature says it is not — see below for an example).
This binding could be provided via a val-binding, a fun-binding, or a datatype-binding.

e For every non-abstract type-binding in BLAH, Name must have the same type binding.

e For every abstract type-binding in BLAH, Name must have some binding that creates that type (either
a datatype binding or a type synonym).

Notice that Name can have any additional bindings that are not in the signature.

Equivalent Implementations

Given our property- and invariant-preserving signatures RATIONAL_B and RATIONAL_C, we know clients cannot
rely on any helper functions or the actual representation of rationals as defined in the module. So we could
replace the implementation with any equivalent implementation that had the same properties: as long as
any call to the toString binding in the module produced the same result, clients could never tell. This
is another essential software-development task: improving/changing a library in a way that does not break
clients. Knowing clients obey an abstraction boundary, as enforced by ML’s signatures, is invaluable.

As a simple example, we could make gcd a local function defined inside of reduce and know that no client
will fail to work since they could not rely on gecd’s existence. More interestingly, let’s change one of the
invariants of our structure. Let’s not keep rationals in reduced form. Instead, let’s just reduce a rational
right before we convert it to a string. This simplifies make_frac and add, while complicating toString,
which is now the only function that needs reduce. Here is the whole structure, which would still match
signatures RATIONAL_A, RATIONAL_B, or RATIONAL_C:

structure Rational2 :> RATIONAL_A (* or B or C *) =
struct
datatype rational = Whole of int | Frac of int*int
exception BadFrac

fun make_frac (x,y) =
ify=20
then raise BadFrac
else if y < 0
then Frac(™x,”y)
else Frac(x,y)

fun add (r1,r2) =
case (r1,r2) of
(Whole(i),Whole(j))  => Whole(i+j)
| (Whole(i),Frac(j,k)) => Frac(j+k*i,k)



| (Frac(j,k),Whole(i)) => Frac(j+kx*i,k)
| (Frac(a,b),Frac(c,d)) => Frac(a*d + b*c, bx*d)

fun toString r =
let fun ged (x,y) =
if x=y
then x
else if x <y
then gcd(x,y-x)
else gcd(y,x)

fun reduce r =
case r of
Whole _ =>r
| Frac(x,y) =>
if x=0
then Whole O
else
let val d = gcd(abs x,y) in
if d=y
then Whole(x div d)
else Frac(x div d, y div d)
end
in
case reduce r of
Whole i  => Int.toString i
| Frac(a,b) => (Int.toString a) ~ "/" ~ (Int.toString b)
end
end

If we give Rationall and Rational2 the signature RATIONAL_A, both will type-check, but clients can
still distinguish them. For example, Rationall.toString(Rationall.Frac(21,3)) produces "21/3", but
Rational2.toString(Rational2.Frac(21,3)) produces "7". But if we give Rationall and Rational2
the signature RATIONAL_B or RATIONAL_C, then the structures are equivalent for any possible client. This
is why it is important to use restrictive signatures like RATIONAL_B to begin with: so you can change the
structure later without checking all the clients.

While our two structures so far maintain different invariants, they do use the same definition for the type
rational. This is not necessary with signatures RATIONAL_B or RATIONAL_C; a different structure having
these signatures could implement the type differently. For example, suppose we realize that special-casing
whole-numbers internally is more trouble than it is worth. We could instead just use int*int and define
this structure:

structure Rational3 :> RATIONAL_B (¥ or C *)=
struct

type rational = int*int

exception BadFrac

fun make_frac (x,y) =
ify=0
then raise BadFrac
else if y < O
then (7x,7y)



else (x,y)
fun Whole i = (i,1)
fun add ((a,b),(c,d)) = (axd + c*b, bx*xd)

fun toString (x,y) =
if x=0
then "O"
else
let fun gcd (x,y) =
if x=y
then x
else if x <y
then gcd(x,y-x)
else gcd(y,x)
val d = gcd (abs x,y)
val num = x div d
val denom = y div d
in
Int.toString num ~ (if denom=1
then ""
else "/" = (Int.toString denom))
end
end

(This structure takes the Rational2 approach of having toString reduce fractions, but that issue is largely
orthogonal from the definition of rational.)

Notice that this structure provides everything RATIONAL_B requires. The function make_frac is interesting
in that it takes an int*int and return an int*int, but clients do not know the actual return type, only
the abstract type rational. And while giving it an argument type of rational in the signature would
match, it would make the module useless since clients would not be able to create a value of type rational.
Nonetheless, clients cannot pass just any int*int to add or toString; they must pass something that they
know has type rational. As with our other structures, that means rationals are created only by make_frac
and add, which enforces all our invariants.

Our structure does not match RATIONAL_A since it does not provide rational as a datatype with constructors
Frac and Whole.

Our structure does match signature RATIONAL_C because we explicitly added a function Whole of the right
type. No client can distinguish our “real function” from the previous structures’ use of the Whole constructor
as a function.

The fact that fun Whole i = (i,1) matches val Whole : int -> rational is interesting. The type of

Whole in the module is actually polymorphic: ’a -> ’a * int. ML signature matching allows ’a -> ’a * int
tomatch int -> rational because ’a -> ’a * int is more general than int -> int * int and int -> rational
is a correct abstraction of int -> int * int. Less formally, the fact that Whole has a polymorphic type

inside the module does not mean the signature has to give it a polymorphic type outside the module.

And in fact it cannot while using the abstract type since Whole cannot have the type a -> int * int or

’a -> rational.



Different modules define different types

While we have defined different structures (e.g., Rationall, Rational2, and Rational3) with the same
signature (e.g., RATIONAL_B), that does not mean that the bindings from the different structures can be used
with each other. For example, Rationall.toString(Rational2.make_frac(2,3)) will not type-check,
which is a good thing since it would print an unreduced fraction. The reason it does not type-check is
that Rational2.rational and Rationall.rational are different types. They were not created by the
same datatype binding even though they happen to look identical. Moreover, outside the module we do
not know they look identical. Indeed, Rational3.toString(Rational2.make_frac(2,3)) really needs not
to type-check since Rational3.toString expects an int*int but Rational2.make_frac(2,3)) returns a
value made out of the Rational2.Frac constructor.

What is Type Inference?

While we have been using ML type inference for a while now, we have not studied it carefully. We will first
carefully define what type inference is and then see via several examples how ML type inference works.

Java, C, and ML are all examples of statically typed languages, meaning every binding has a type that is
determined “at compile-time,” i.e., before any part of the program is run. The type-checker is a compile-time
procedure that either accepts or rejects a program. By contrast, Racket, Ruby, and Python are dynamically
typed languages, meaning the type of a binding is not determined ahead of time and computations like binding
42 to x and then treating x as a string result in run-time errors. After we do some programming with Racket,
we will compare the advantages and disadvantages of static versus dynamic typing as a significant course
topic.

Unlike Java and C, ML is implicitly typed, meaning programmers rarely need to write down the types of
bindings. This is often convenient (though some disagree as to whether it makes code easier or harder
to read), but in no way changes the fact that ML is statically typed. Rather, the type-checker has to be
more sophisticated because it must infer (i.e., figure out) what the type annotations “would have been” had
programmers written all of them. In principle, type inference and type checking could be separate steps (the
inferencer could do its part and the checker could see if the result should type-check), but in practice they
are often merged into “the type-checker.” Note that a correct type-inferencer must find a solution to what
all the types should be whenever such a solution exists, else it must reject the program.

Whether type inference for a particular programming language is easy, difficult, or impossible is often not
obvious. It is mot proportional to how permissive the type system is. For example, the “extreme” type
systems that “accept everything” and “accept nothing” are both very easy to do inference for. When we
say type inference may be impossible, we mean this in the technical sense of undecidability, like the famous
halting problem. We mean there are type systems for which no computer program can implement type
inference such that (1) the inference process always terminates, (2) the inference process always succeeds if
inference is possible, and (3) the inference process always fails if inference is not possible.

Fortunately, ML was rather cleverly designed so that type inference can be performed by a fairly straight-
forward and elegant algorithm. While there are programs for which inference is intractably slow, programs
people write in practice never cause such behavior. We will demonstrate key aspects of the algorithm for
ML type inference with a few examples. This will give you a sense that type inference is not “magic.” In
order to move on to other course topics, we will not describe the full algorithm or write code to implement
it.

ML type inference ends up intertwined with parametric polymorphism — when the inferencer determines a
function’s argument or result “could be anything” the resulting type uses ’a, ’b, etc. But type inference
and polymorphism are entirely separate concepts: a language could have one or the other. For example,
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Java has generics but no inference for method argument /result types.

Overview of ML Type Inference

Here is an overview of how ML type inference works (more examples to follow):

e It determines the types of bindings in order, using the types of earlier bindings to infer the types of
later ones. This is why you cannot use later bindings in a file. (When you need to, you use mutual
recursion and type inference determines the types of all the mutually recursive bindings together.
Mutual recursion is covered later in this unit.)

e For each val or fun binding, it analyzes the binding to determine necessary facts about its type. For
example, if we see the expression x+1, we conclude that x must have type int. We gather similar facts
for function calls, pattern-matches, etc.

o Afterward, use type variables (e.g., ’a) for any unconstrained types in function arguments or results.

e (Enforce the value restriction — only variables and values can have polymorphic types, as discussed
later.)

The amazing fact about the ML type system is that “going in order” this way never causes us to reject a
program that could type-check nor do we ever accept a program we should not. So explicit type annotations
really are optional unless you use features like #1. (The problem with #1 is that it does not give enough
information for type inference to know what other fields the tuple/record should have, and the ML type
system requires knowing the exact number of fields and all the fields’ names.)

Here is an initial, very simple example:

val x = 42
fun f(y,z,w) = if y then z+x else 0O

Type inference first gives x type int since 42 has type int. Then it moves on to infer the type for £. Next
we will study, via other examples, a more step-by-step procedure, but here let us just list the key facts:

e y must have type bool because we test it in a conditional.
e z must have type int because we add it to something we already determined has type int.
e w can have any type because it is never used.

e f must return an int because its body is a conditional where both branches return an int. (If they
disagreed, type-checking would fail.)

So the type of £ must be bool * int * ’a -> int.

More Thorough Examples of ML Type Inference

We will now work through a few examples step-by-step, generating all the facts that the type-inference
algorithm needs. Note that humans doing type inference “in their head” often take shortcuts just like
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humans doing arithmetic in their head, but the point is there is a general algorithm that methodically goes
through the code gathering constraints and putting them together to get the answer.

As a first example, consider inferring the type for this function:

fun f x =
let val (y,z) = x in
(abs y) + z
end

Here is how we can infer the type:

e Looking at the first line, £ must have type T1->T2 for some types T1 and T2 and in the function body
f has this type and x has type T1.

e Looking at the val-binding, x must be a pair type (else the pattern-match makes no sense), so in fact
T1=T3%*T4 for some T3 and T4, and y has type T3 and z has type T4.

e Looking at the addition expression, we know from the context that abs has type int->int, so y having
type T3 means T3=int. Similarly, since abs y has type int, the other argument to + must have type
int, so z having type T4 means T4=int.

e Since the type of the addition expression is int, the type of the let-expression is int. And since the
type of the let-expression is int, the return type of f is int, i.e., T2=int.

Putting all these constraints together, T1=int*int (since T1=T3#T4) and T2=int, so f has type int*int->int.

Next example:

fun sum xs =
case xs of
0=>0

| x::x8” => x + (sum xs’)

e From the first line, there exists types T1 and T2 such that sum has type T1->T2 and xs has type T1.

e Looking at the case-expression, xs must have a type that is compatible with all of the patterns. Looking
at the patterns, both of them match any list, since they are built from list constructors (in the x: :xs’
case the subpatterns match anything of any type). So since xs has type T1, in fact T1=T3 list from
some type T3.

e Looking at the right-hand sides of the case branches, we know they must have the same type as each
other and this type is T2. Since 0 has type int, T2=int.

e Looking at the second case branch, we type-check it in a context where x and xs’ are available. Since
we are matching the pattern x::xs’ against a T3 1list, it must be that x has type T3 and xs’ has
type T3 list.

e Now looking at the right-hand side, we add x, so in fact T3=int. Moreover, the recursive call type-
checks because xs’ has type T3 list and T3 1list=T1 and sum has type T1->T2. Finally, since T2=int,
adding sum xs’ type-checks.

Putting everything together, we get sum has type int list -> int.
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Notice that before we got to sum xs’ we had already inferred everything, but we still have to check that types
are used consistently and reject otherwise. For example, if we had written sum x, that cannot type-check —
it is inconsistent with previous facts. Let us see this more thoroughly to see what happens:

fun broken_sum xs =
case xs of
0=>0
| x::x8” => x + (broken_sum x)

e Type inference for broken_sum proceeds largely the same as for sum. The first four bullets from the
previous example all apply, giving broken_sum type T3 list ->int, x3 type T3 list, x type T3, and
xs’ type T3 list. Moreover, T3=int.

e We depart from the correct sum implementation with the call broken_sum x. For this call to type-
check, x must have the same type as broken_sum’s parameter, or in other words, T1=T3. However, we
know that T1=T3 list, so this new constraint T1=T3 actually generates a contradiction: T3=T3 list.
If we want to be more concrete, we can use our knowledge that T3=int to rewrite this as int=int list.
Looking at the definition of broken_sum it should be obvious that this is exactly the problem: we tried
to use x as an int and as an int list.

When your ML program does not type-check, the type-checker reports the expression where it discovered
a contradiction and what types were involved in that contradiction. While sometimes this information is
helpful, other times the actual problem is with a different expression, but the type-checker did not reach a
contradiction until later.

Examples with Polymorphic Types

Our remaining examples will infer polymorphic types. All we do is follow the same procedure we did above,
but when we are done, we will have some parts of the function’s type that are still unconstrained. For each
Ti that “can be anything” we use a type variable (’a, ’b, etc.).

fun length xs =
case xs of
[0 =>0
| x::xs’ => 1 + (length xs’)

Type inference proceeds much like with sum. We end up determining:

e length has type T1->T2.

xs has type T1.

T1=T3 list (due to the pattern-match)

T2=int because 0 can be the result of a call to length.

x has type T3 and xs’ has type T3 list.

The recursive call length xs’ type-checks because xs’ has type T3 list, which is T1, the argument
type of length. And we can add the result because T2=int.
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So we have all the same constraints as for sum, except we do not have T3=int. In fact, T3 can be anything
and length will type-check. So type inference recognizes that when it is all done, it has length with type
T3 list -> int and T3 can be anything. So we end up with the type ’a 1ist -> int, as expected. Again
the rule is simple: for each Ti in the final result that cannot be constrained, use a type variable.

A second example:
fun compose (f,g) = fn x => f (g x)

e Since the argument to compose must be a pair (from the pattern used for its argument), compose has
type T1*T2->T3, £ has type T1 and g has type T2.

Since compose returns a function, T3 is some T4->T5 where in that function’s body, x has type T4.

So g must have type T4->T6 for some T6, i.e., T2=T4->T6.

e And f must have type T6->T7 for some T7, i.e., TI=T6->T7.

But the result of £ is the result of the function returned by compose, so T7=T5 and so T1=T6->T5.

Putting together T1=T6->T5 and T2=T4->T6 and T3=T4->T5 we have a type for compose of

(T6->T5) *(T4->T6) -> (T4->T5). There is nothing else to constrain the types T4, T5, and T6, so we
replace them consistently to end up with (?a->’b)*(>c->’a) -> (’c->’b) as expected (and the last set
of parentheses are optional, but that is just syntax).

Here is a simpler example that also has multiple type variables:

fun f (x,y,2) =
if true
then (x,y,z)
else (y,x,2)

e The first line requires that £ has type T1*T2xT3 -> T4, x has type T1, y has type T2, and z has type
T3.

e The two branches of the conditional must have the same type and this is the return type of the function
T4. Therefore, T4=T1*T2xT3 and T4=T2*T1*T3. This constraint requires T1=T2.

Putting together these constraints (and no others), £ will type-check with type T1¥T1+T3 -> T1*T1*T3 for
any types T1 and T3. So replacing each type consistently with a type variable, we get >a*’a*’b -> ’a*’a*’b,
which is correct: x and y must have the same type, but z can (but need not) have a different type. Notice
that the type-checker always requires both branches of a conditional to type-check with the same type, even
though here we know which branch will be evaluated.

Optional: The Value Restriction

As described so far in this unit, the ML type system is unsound, meaning that it would accept programs
that when run could have values of the wrong types, such as putting an int where we expect a string. The
problem results from a combination of polymorphic types and mutable references, and the fix is a special
restriction to the type system called the value restriction.

This is an example program that demonstrates the problem:
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val r = ref NONE (* ’a option ref *)
val _ = r := SOME "hi" (* instantiate ’a with string *)
val i = 1 + valOf(!r) (x instantiate ’a with int *)

Straightforward use of the rules for type checking/inference would accept this program even though we
should not — we end up trying to add 1 to "hi". Yet everything seems to type-check given the types for the
functions/operators ref (’a -> ’a ref), := (*a ref * ’a -> unit), and ! (*a ref -> ’a).

To restore soundness, we need a stricter type system that does not let this program type-check. The choice
ML made is to prevent the first line from having a polymorphic type. Therefore, the second and third lines
will not type-check because they will not be able to instantiate an ’a with string or int. In general, ML
will give a variable in a val-binding a polymorphic type only if the expression in the val-binding is a value
or a variable. This is called the value restriction. In our example, ref NONE is a call to the function ref.
Function calls are not variables or values. So we get a warning and r is given a type 7X1 option ref where
7X1 is a “dummy type,” not a type variable. This makes r not useful and the later lines do not type-check.
It is not at all obvious that this restriction suffices to make the type system sound, but in fact it is sufficient.

For r above, we can use the expression ref NONE, but we have to use a type annotation to give r a non-
polymorphic type, such as int option ref. Whatever we pick, one of the next two lines will not type-check.

As we saw previously when studying partial application, the value restriction is occasionally burdensome
even when it is not a problem because we are not using mutation. We saw that this binding falls victim to
the value-restriction and is not made polymorphic:

val pairWithOne = List.map (fn x => (x,1))

We saw multiple workarounds. One is to use a function binding, even though without the value restriction it
would be unnecessary function wrapping. This function has the desired type ’a list -> (’a * int) list:

fun pairWithOne xs = List.map (fn x => (x,1)) xs

One might wonder why we cannot enforce the value restriction only for references (where we need it) and
not for immutable types like lists. The answer is the ML type-checker cannot always know which types are
really references and which are not. In the code below, we need to enforce the value restriction on the last
line, because ’a foo and ’a ref are the same type.

type ’a foo = ’a ref
val £ : ’a -> ’a foo = ref
val r = £ NONE

Because of ML’s module system, the type-checker does not always know the definition of type synonyms
(recall this is a good thing). So to be safe, it enforces the value restriction for all types.

Optional: Some Things that Make Type Inference More Difficult

Now that we have seen how ML type inference works, we can make two interesting observations:

e Inference would be more difficult if ML had subtyping (e.g., if every triple could also be a pair) because
we would not be able to conclude things like, “T3=T1*T2” since the equals would be overly restrictive.
We would instead need constraints indicating that T3 is a tuple with at least two fields. Depending on
various details, this can be done, but type inference is more difficult and the results are more difficult
to understand.
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e Inference would be more difficult if ML did not have parametric polymorphism since we would have to
pick some type for functions like length and compose and that could depend on how they are used.

Mutual Recursion

We have seen many examples of recursive functions and many examples of functions using other functions
as helper functions, but what if we need a function f to call g and g to call £7 That can certainly be useful,
but ML’s rule that bindings can only use earlier bindings makes it more difficult — which should come first,
forg?

It turns out ML has special support for mutual recursion using the keyword and and putting the mutually
recursive functions next to each other. Similarly, we can have mutually recursive datatype bindings. After
showing these new constructs, we will show that you can actually work around a lack of support for mutually
recursive functions by using higher-order functions, which is a useful trick in general and in particular in ML
if you do not want your mutually recursive functions next to each other.

Our first example uses mutual recursion to process an int list and return a bool. It returns true if the
list strictly alternates between 1 and 2 and ends with a 2. Of course there are many ways to implement such
a function, but our approach does a nice job of having for each “state” (such as “a 1 must come next” or
“a 2 must come next”) a function. In general, many problems in computer science can be modeled by such
finite state machines, and mutually recursive functions, one for each state, are an elegant way to implement
finite state machines.!

fun match xs =
let fun s_need_one xs =
case xs of

[1 => true
| 1::x8’ => s_need_two xs’
| _ => false

and s_need_two xs =
case xs of

[1 => false
| 2::x8’ => s_need_one xs’
| _ => false

in
s_need_one Xs
end

(The code uses integer constants in patterns, which is an occasionally convenient ML feature, but not essential
to the example.)

In terms of syntax, we define mutually recursive functions by simply replacing the keyword fun for all
functions except the first with and. The type-checker will type-check all the functions (two in the example
above) together, allowing calls among them regardless of order.

Here is a second (silly) example that also uses two mutually recursive datatype bindings. The definition of
types t1 and t2 refer to each other, which is allowed by using and in place of datatype for the second one.
This defines two new datatypes, t1 and t2.

datatype tl = Foo of int | Bar of t2

1Because all function calls are tail calls, the code runs in a small amount of space, just as one would expect for an imple-
mentation of a finite state machine.
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and t2 = Baz of string | Quux of t1

fun no_zeros_or_empty_strings_tl x =
case x of
Foo i =>1<>0
| Bar y => no_zeros_or_empty_strings_t2 y
and no_zeros_or_empty_strings_t2 x =
case x of
Baz s => size s > 0
| Quux y => no_zeros_or_empty_strings_tl y
Now suppose we wanted to implement the “no zeros or empty strings” functionality of the code above but
for some reason we did not want to place the functions next to each other or we were in a language with no
support for mutually recursive functions. We can write almost the same code by having the “later” function
pass itself to a version of the “earlier” function that takes a function as an argument:

fun no_zeros_or_empty_strings_t1(f,x) =
case x of
Foo i =>1i <> 0
| Bar y => f y

fun no_zeros_or_empty_string t2 x =
case x of
Baz s => size s > 0
| Quux y => no_zeros_or_empty_strings_t1(no_zeros_or_empty_string_t2,y)

This is yet-another powerful idiom allowed by functions taking functions.

Motivating and Defining Equivalence

The idea that one piece of code is “equivalent” to another piece of code is fundamental to programming and
computer science. You are informally thinking about equivalence every time you simplify some code or say,
“here’s another way to do the same thing.” This kind of reasoning comes up in several common scenarios:

e Code maintenance: Can you simplify, clean up, or reorganize code without changing how the rest of
the program behaves?

e Backward compatibility: Can you add new features without changing how any of the existing features
work?

e Optimization: Can you replace code with a faster or more space-efficient implementation?
e Abstraction: Can an external client tell if I make this change to my code?
Also notice that our use of restrictive signatures in the previous lecture was largely about equivalence: by

using a stricter interface, we make more different implementations equivalent because clients cannot tell the
difference.

We want a precise definition of equivalence so that we can decide whether certain forms of code maintenance
or different implementations of signatures are actually okay. We do not want the definition to be so strict that
we cannot make changes to improve code, but we do not want the definition to be so lenient that replacing
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one function with an “equivalent” one can lead to our program producing a different answer. Hopefully,
studying the concepts and theory of equivalence will improve the way you look at software written in any
language.

There are many different possible definitions that resolve this strict/lenient tension slightly differently. We
will focus on one that is useful and commonly assumed by people who design and implement programming
languages. We will also simplify the discussion by assuming that we have two implementations of a function
and we want to know if they are equivalent.

The intuition behind our definition is as follows:

e A function f is equivalent to a function g (or similarly for other pieces of code) if they produce the
same answer and have the same side-effects no matter where they are called in any program with any
arguments.

e Equivalence does not require the same running time, the same use of internal data structures, the same
helper functions, etc. All these things are considered “unobservable”, i.e., implementation details that
do not affect equivalence.

As an example, consider two very different ways of sorting a list. Provided they both produce the same final
answer for all inputs, they can still be equivalent no matter how they worked internally or whether one was
faster. However, if they behave differently for some lists, perhaps for lists that have repeated elements, then
they would not be equivalent.

However, the discussion above was simplified by implicitly assuming the functions always return and have
no other effect besides producing their answer. To be more precise, we need that the two functions when
given the same argument in the same environment:

1. Produce the same result (if they produce a result)
2. Have the same (non)termination behavior; i.e., if one runs forever the other must run forever

Mutate the same (visible-to-clients) memory in the same way.

- W

Do the same input/output

5. Raise the same exceptions

These requirements are all important for knowing that if we have two equivalent functions, we could replace
one with the other and no use anywhere in the program will behave differently.

Another Benefit of Side-Effect-Free Programming

One easy way to make sure two functions have the same side effects (mutating references, doing input/output,
etc.) is to have no side effects at all. This is exactly what functional languages like ML encourage. Yes, in
ML you could have a function body mutate some global reference or something, but it is generally bad style.
Other functional languages are pure functional languages meaning there really is no way to do mutation
inside (most) functions.

If you “stay functional” by not doing mutation, printing, etc. in function bodies as a matter of policy, then
callers can assume lots of equivalences they cannot otherwise. For example, can we replace (f x)+(f x)
with (f x)#*27 In general, that can be a wrong thing to do since calling £ might update some counter or
print something. In ML, that’s also possible, but far less likely as a matter of style, so we tend to have more
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things be equivalent. In a purely functional language, we are guaranteed the replacement does not change
anything. The general point is that mutation really gets in your way when you try to decide if two pieces of
code are equivalent — it is a great reason to avoid mutation.

In addition to being able to remove repeated computations (like (f x) above) when maintaining side-effect-
free programs, we can also reorder expressions much more freely. For example, in Java, C, etc.:

int a = f(x);
int b = g(y);
return b - a;

might produce a different result from:
return g(y) - £(x);

since £ and g can get called in a different order. Again, this is possible in ML too, but if we avoid side-effects,
it is much less likely to matter. (We might still have to worry about a different exception getting thrown
and other details, however.)

Standard Equivalences

Equivalence is subtle, especially when you are trying to decide if two functions are equivalent without knowing
all the places they may be called. Yet this is common, such as when you are writing a library that unknown
clients may use. We now consider several situations where equivalence is guaranteed in any situation, so
these are good rules of thumb and are good reminders of how functions and closures work.

First, recall the various forms of syntactic sugar we have learned. We can always use or not use syntactic
sugar in a function body and get an equivalent function. If we couldn’t, then the construct we are using is
not actually syntactic sugar. For example, these definitions of £ are equivalent regardless of what g is bound
to:

fun f x = fun f x =
if x x andalso g x
then g x

else false
Notice though, that we could not necessarily replace x andalso g x with if g x then x else falseifg
could have side effects or not terminate.
Second, we can change the name of a local variable (or function parameter) provided we change all uses of

it consistently. For example, these two definitions of £ are equivalent:

val y = 14 val y = 14
fun f x = x+y+x fun f z = z+y+z

But there is one rule: in choosing a new variable name, you cannot choose a variable that the function body
is already using to refer to something else. For example, if we try to replace x with y, we get fun y = y+y+y,
which is not the same as the function we started with. A previously-unused variable is never a problem.

Third, we can use or not use a helper function. For example, these two definitions of g are equivalent:
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val y = 14 val y = 14
fun g z = (zt+y+z)+z fun f x = x+y+x
fun g z = (f z)+z

Again, we must take care not to change the meaning of a variable due to £ and g having potentially different
environments. For example, here the definitions of g are not equivalent:

val y = 14 val y = 14
val y = 7 fun f x = x+y+x
fun g z = (z+y+z)+z val y = 7

fun g z = (£ z)+z

Fourth, as we have explained before with anonymous functions, unnecessary function wrapping is poor
style because there is a simpler equivalent way. For example, fun g y = £ y and val g = f are always
equivalent. Yet once again, there is a subtle complication. While this works when we have a variable like f
bound to the function we are calling, in the more general case we might have an expression that evaluates
to a function that we then call. Are fun g y = e y and val g = e always the same for any expression e?
No.

As asilly example, consider fun h() (print "hi" ; fn x => x+x) andeish(). Thenfun g y = (h()) y
is a function that prints every time it is called. But val g = h() is a function that does not print — the
program will print "hi" once when creating the binding for g. This should not be mysterious: we know that
val-bindings evaluate their right-hand sides “immediately” but function bodies are not evaluated until they
are called.

A less silly example might be if h might raise an exception rather than returning a function.
Fifth, it is almost the case that let val p = el in e2 end can be sugar for (fn p => e2) el. After all,
for any expressions el and e2 and pattern p, both pieces of code:
o Evaluate el to a value
e Match the value against the pattern p
e If it matches, evaluate €2 to a value in the environment extended by the pattern match
e Return the result of evaluating e2
Since the two pieces of code “do” the exact same thing, they must be equivalent. In Racket, this will be the

case (with different syntax). In ML, the only difference is the type-checker: The variables in p are allowed
to have polymorphic types in the let-version, but not in the anonymous-function version.

For example, consider let val x = (fn y => y) in (x 0, x true) end. This silly code type-checks and
returns (0,true) because x has type a->’a. But (fn x => (x 0, x true)) (fn y => y) does not type-
check because there is no non-polymorphic type we can give to x and function-arguments cannot have
polymorphic types. This is just how type-inference works in ML.

Revisiting our Definition of Equivalence

By design, our definition of equivalence ignores how much time or space a function takes to evaluate. So
two functions that always returned the same answer could be equivalent even if one took a nanosecond and
another took a million years. In some sense, this is a good thing since the definition would allow us to replace
the million-year version with the nanosecond version.
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But clearly other definitions matter too. Courses in data structures and algorithms study asymptotic com-
plexity precisely so that they can distinguish some algorithms as “better” (which clearly implies some “differ-
ence”) even though the better algorithms are producing the same answers. Moreover, asymptotic complexity,
by design, ignores “constant-factor overheads” that might matter in some programs so once again this stricter
definition of equivalence may be too lenient: we might actually want to know that two implementations take
“about the same amount of time.”

None of these definitions are superior. All of them are valuable perspectives computer scientists use all the
time. Observable behavior (our definition), asymptotic complexity, and actual performance are all intellectual
tools that are used almost every day by someone working on software.
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