CSE341 — Section 9

Double Dispatch, Expression Problem, Mixins, and More!

Cody Schroeder

March 7", 2013

Cody Schroeder CSE341 — Section 9

© Double Dispatch
@ What? What?
@ Emulating Double Dispatch

© Expression Problem
@ The Table
@ Examples

© Mixins
@ Intro
@ Standard Mixins

Q@ Visitors
@ Visitor Pattern

Cody Schroeder CSE341 — Section 9

Emulating Double Dispatch
General Look

@ Dispatch is the runtime procedure for looking up which
function to call based on the parameters given.
o What is Ruby's procedure? (Same as Java's)
o Single Dispatch on the implicit self parameter.

@ They use the runtime class of the self parameter to lookup
the correct method when a call is made.
o This is CSE143.

@ Single Dispatch isn't the only possible choice, though.
@ What about dispatching based on the runtime classes of both
self and the first method parameter?
e This is generally known as Double Dispatch.

o Ruby/Java doesn’t have this, but we can emulate it.
o This is HW7.

@ Future Look: You can dispatch on any number of the parameters and the
general term for this is Multiple Dispatch or Multimethods.

Cody Schroeder CSE341 — Section 9

What? What?
Emulating Double Dispatch

@ The key idea to emulating double dispatch in Ruby, and on
HW?7, is use the built-in single dispatch procedure twice!
e Sounds simple when put that way, doesn't it?

o Have the principal method immediately call another method on
its first parameter, passing in self.

@ That second call will implicitly know the class of the self
parameter.

o It will also know the class of the first parameter of the
principal method because of Single Dispatch.

e Of course, there are other ways to emulate double dispatch.
e It's often found as an idiom in SML by using case expressions.

Cody Schroeder CSE341 — Section 9

Simple Example

class A
def £ x
x.fWithA self
end
def fWithA a

"(a, a) case'

What? What?

class B
def £ x
x.fWithB self
end
def fWithA a
"(a, b) case"

end end
def fWithB b def fWithB b
"(b, a) case' "(b, b) case"
end end
end end

A.new.f(A.new) # "(a, a) case"

A.new.f(B.new) # "(a, b) case"

B.new.f(A.new) # "(b, a) case"

B.new.f (B.new) # "(b, b) case"

Cody Schroeder CSE341 — Section 9

What? What?

Simple Example (SML)

datatype t = A | B

fun £ x y =
case (x, y) of
(A, A) => "(a, a) case"
| (A, B) => "(a, b) case"
| (B, A) => "(b, a) case"
| (B, B) => "(b, b) case"

f A A; (x"(a, a) case" x)
£ A B; (x "(a, b) case" %)
£ B A; (x "(b, a) case" %)
f B B; (x "(b, b) case" x)

Cody Schroeder CSE341 — Section 9

What? What?

Rock/Paper/Scissors Example

@ We have three classes {Rock, Paper, Scissors}

o We want to write a fight method that returns a winner
between the type of self and another {Rock, Paper, Scissors}

SML Version

fun fight wi w2 =
case (w1, w2) of

(Paper p, Rock _) => wins p
(Rock r, Scissors _) => wins r
(Scissors s, Paper _) => wins s
(Rock _, Paper p) => wins p
(Scissors _, Rock r) => wins r
(Paper _, Scissors s) => wins s
_ => tie;

Cody Schroeder CSE341 — Section 9

Examples
The Expression Problem

@ Problem: Where do we put the code for each cell?
o How do we group the code together?
@ By columns??? *OR* By rows??7?

N

OpA ||OpB|| OpC | OpD

TypeA
[TypeB]
TypeC
TypeD

~———

@ This can be distilled down into an OOP vs FP argument. ..
o OOP generally groups by row (by types/classes)
o Preferable if more likely to add types rather than operations
o FP generally groups by column (by operations/functions)
o Preferable if more likely to add operations rather than types

Cody Schroeder CSE341 — Section 9

The Table
Examples

Rock/Paper/Scissors

fight | to_ s

Rock
Paper
Scissors

o Ruby (OOP): By rows (classes)
e SML (FP): By columns (functions)

4

lec22 stageC.rb

Same idea, just more complicated operations!

Cody Schroeder CSE341 — Section 9

Standard Mixins

Mixins Motivation

o Look at all of these cool methods on every object!
@ There seems to be a lot of recurring methods, though.

o Is that implemented by code reuse or redundant code?
o Maybe they have a common ancestor and use inheritance?
o But what about String and FixNum?

o Nearest common ancestors is Object, but Objects don't
generally have <=>, <, ... among other methods in common.
@ Inheritance doesn't work here, but we still want to reuse code

@ Mixins are a Ruby construct that is simply for code reuse
o Perfect for sharing code between otherwise unrelated classes

Code Examples

Sees mixins.rb.

Cody Schroeder CSE341 — Section 9

Standard Mixins

Working with Mixins

Defining a Mixin

module MixinNameHere
def methodl
do stuff
end
def method2(x,y,z) # Any arguments...
methodl # Calling above method (ignoring shadowing)
someOtherMethod # This is not in the mixin
end
end

v

Utilizing a Mixin
class SomeClass

include MixinNameHere
end

A

Cody Schroeder CSE341 — Section 9

Standard Mixins

Comparable Mixin

o All of these methods depend on a single method named <=>
o If Dan asks... say that | called it the spaceship operator.

o It's almost the same as Comparable#compareTo from Java
o The return is restricted to the values {-1,0,1}

0 <=>5 # -1
"ab" <=> "a" # 1 (lexicographical ordering)
[1,2] <=> [1,2] # O (analogous to Strings)

Enumerable Mixin

@ Awesomeness within a Module (contains 47 methods)!!!!
o All depends on the each method that we've discussed

Cody Schroeder CSE341 — Section 9

Visitor Pattern

e A template for handling a functional composition in OOP.

e OOP wants to group code by classes
o We want code grouped by functions

o This makes it easier to add operations at a later time.
@ Relies on Double Dispatch!!!
o Dispatch based on (VisitorType, ValueType) pairs.
@ Often used to compute over AST's (abstract syntax trees)
o Heavily used in compilers

@ Remember visitPostOrder??77?

Code Examples

See visitor.rb and visitor.sml.

Cody Schroeder CSE341 — Section 9

	Double Dispatch
	What? What?
	Emulating Double Dispatch

	Expression Problem
	The Table
	Examples

	Mixins
	Intro
	Standard Mixins

	Visitors
	Visitor Pattern

