
CSE341: Programming Languages

Lecture 11

Type Inference

Dan Grossman

Spring 2013

Type-checking

• (Static) type-checking can reject a program before it runs to

prevent the possibility of some errors

– A feature of statically typed languages

• Dynamically typed languages do little (none?) such checking

– So might try to treat a number as a function at run-time

• Will study relative advantages after some Racket

– Racket, Ruby (and Python, Javascript, …) dynamically typed

• ML (and Java, C#, Scala, C, C++) is statically typed

– Every binding has one type, determined “at compile-time”

Spring 2013 2 CSE341: Programming Languages

Implicitly typed

• ML is statically typed

• ML is implicitly typed: rarely need to write down types

• Statically typed: Much more like Java than Javascript!

Spring 2013 3 CSE341: Programming Languages

fun f x = (* infer val f : int -> int *)

 if x > 3

 then 42

 else x * 2

fun g x = (* report type error *)

 if x > 3

 then true

 else x * 2

Type inference

• Type inference problem: Give every binding/expression a type

such that type-checking succeeds

– Fail if and only if no solution exists

• In principle, could be a pass before the type-checker

– But often implemented together

• Type inference can be easy, difficult, or impossible

– Easy: Accept all programs

– Easy: Reject all programs

– Subtle, elegant, and not magic: ML

Spring 2013 4 CSE341: Programming Languages

Overview

• Will describe ML type inference via several examples

– General algorithm is a slightly more advanced topic

– Supporting nested functions also a bit more advanced

• Enough to help you “do type inference in your head”

– And appreciate it is not magic

Spring 2013 5 CSE341: Programming Languages

Key steps

• Determine types of bindings in order

– (Except for mutual recursion)

– So you cannot use later bindings: will not type-check

• For each val or fun binding:

– Analyze definition for all necessary facts (constraints)

– Example: If see x > 0, then x must have type int

– Type error if no way for all facts to hold (over-constrained)

• Afterward, use type variables (e.g., 'a) for any unconstrained types

– Example: An unused argument can have any type

• (Finally, enforce the value restriction, discussed later)

Spring 2013 6 CSE341: Programming Languages

Very simple example

After this example, will go much more step-by-step

– Like the automated algorithm does

Spring 2013 7 CSE341: Programming Languages

val x = 42 (* val x : int *)

fun f (y, z, w) =

 if y (* y must be bool *)

 then z + x (* z must be int *)

 else 0 (* both branches have same type *)

(* f must return an int

 f must take a bool * int * ANYTHING

 so val f : bool * int * 'a -> int

 *)

Relation to Polymorphism

• Central feature of ML type inference: it can infer types with type

variables

– Great for code reuse and understanding functions

• But remember there are two orthogonal concepts

– Languages can have type inference without type variables

– Languages can have type variables without type inference

Spring 2013 8 CSE341: Programming Languages

Key Idea

• Collect all the facts needed for type-checking

• These facts constrain the type of the function

• See code and/or reading notes for:

– Two examples without type variables

– And one example that does not type-check

– Then examples for polymorphic functions

• Nothing changes, just under-constrained: some types

can “be anything” but may still need to be the same as

other types

Spring 2013 9 CSE341: Programming Languages

Material after here is optional,

 but is an important part of the full story

Spring 2013 10 CSE341: Programming Languages

Two more topics

• ML type-inference story so far is too lenient

– Value restriction limits where polymorphic types can occur

– See why and then what

• ML is in a “sweet spot”

– Type inference more difficult without polymorphism

– Type inference more difficult with subtyping

Important to “finish the story” but these topics are:

– A bit more advanced

– A bit less elegant

– Will not be on the exam

Spring 2013 11 CSE341: Programming Languages

The Problem

As presented so far, the ML type system is unsound!

– Allows putting a value of type t1 (e.g., int) where we

expect a value of type t2 (e.g., string)

A combination of polymorphism and mutation is to blame:

• Assignment type-checks because (infix) := has type

'a ref * 'a -> unit, so instantiate with string

• Dereference type-checks because ! has type

'a ref -> 'a, so instantiate with int

Spring 2013 12 CSE341: Programming Languages

val r = ref NONE (* val r : 'a option ref *)

val _ = r := SOME "hi"

val i = 1 + valOf (!r)

What to do

To restore soundness, need a stricter type system that rejects at

least one of these three lines

• And cannot make special rules for reference types because

type-checker cannot know the definition of all type synonyms

– Module system coming up

Spring 2013 13 CSE341: Programming Languages

val r = ref NONE (* val r : 'a option ref *)

val _ = r := SOME "hi"

val i = 1 + valOf (!r)

type 'a foo = 'a ref

val f = ref (* val f : 'a -> 'a foo *)

val r = f NONE

The fix

• Value restriction: a variable-binding can have a polymorphic

type only if the expression is a variable or value

– Function calls like ref NONE are neither

• Else get a warning and unconstrained types are filled in with

dummy types (basically unusable)

• Not obvious this suffices to make type system sound, but it does

Spring 2013 14 CSE341: Programming Languages

val r = ref NONE (* val r : ?.X1 option ref *)

val _ = r := SOME "hi"

val i = 1 + valOf (!r)

The downside

As we saw previously, the value restriction can cause problems

when it is unnecessary because we are not using mutation

The type-checker does not know List.map is not making a

mutable reference

Saw workarounds in previous segment on partial application

– Common one: wrap in a function binding

Spring 2013 15 CSE341: Programming Languages

val pairWithOne = List.map (fn x => (x,1))

(* does not get type 'a list -> ('a*int) list *)

fun pairWithOne xs = List.map (fn x => (x,1)) xs

(* 'a list -> ('a*int) list *)

A local optimum

• Despite the value restriction, ML type inference is elegant and

fairly easy to understand

• More difficult without polymorpism

– What type should length-of-list have?

• More difficult with subtyping

– Suppose pairs are supertypes of wider tuples

– Then val (y,z) = x constrains x to have at least two

fields, not exactly two fields

– Depending on details, languages can support this, but types

often more difficult to infer and understand

– Will study subtyping later, but not with type inference

Spring 2013 16 CSE341: Programming Languages

