CSE341, Autumn 2012, Blocks; Inheritance Summary

Disclaimer: This lecture summary is not necessarily a complete substitute for attending class, reading the
associated code, etc. It is designed to be a useful resource for students who attended class and are later
reviewing the material.

This lecture covers two separate topics:

1. Blocks, Procs, and iterators — Ruby’s convenient, pervasive but somewhat strange approach to func-
tion closures

2. Subclassing, inheritance, and dynamic dispatch — the most essential aspect of OOP

Ruby’s Blocks

While Ruby has while loops and for loops not unlike Java, much Ruby code written in good style does not
use them. Instead, many classes have methods that take blocks. These blocks are almost closures. For
example, integers have a times method that takes a block and executes it the number of times you would
imagine. For example,

x.times { puts "hi" }

prints "hi" 3 times if x is bound to 3 in the environment. To pass a block to a method, you put it in braces
after the method call. The example above has no regular arguments, but a method can take any number of
regular arguments and then 0 or 1 block.

Blocks are closures in the sense that they can refer to variables in scope where the block is defined. For
example, after this program executes, y is bound to 10:

y=7
[4,6,8].each { y += 1 }

Here [4,6,8] is an array with with 3 elements. Arrays have a method each that takes a block and executes
it once for each element. Typically, however, we want the block to be passed each array element. We do
that like this, for example to sum an array’s elements and print out the running sum at each point:

sum = O

[4,6,8] .each { |x]|
sum += x
puts sum

}

When calling a method that takes a block, you should know how many arguments will be passed to the block
when it is called. For the each method in Array, the answer is 1, but as the first example showed, you can
ignore arguments if you have no need for them by omitting the |...|.

Many collections, including arrays, have a variety of block-taking methods that look very familiar to func-
tional programmers. For example, inject is just like the fold we studied in Haskell:

sum = [4,6,8].inject(0) { lacc,elt| acc + elt }



The argument to inject is the initial accumulator. If you omit it, inject will use the Oth element of the
array as the initial accumulator and start with the next array element. Some other useful iterators (methods
that take care of iterating through the elements in one way or another) are map and any?. In a later lecture,
we will learn that many of the iterators are actually defined in terms of each in a mizin so that they do not
have to be reimplemented for each collection.

Using blocks in your own methods

While many uses of blocks involve calling methods in the standard library, you can also define your own
methods that take blocks. In fact, you can pass a block to any method. The method body calls the block
using the yield keyword. For example, this code prints "hi" 3 times:

def foo x
if x
yield
else
yield
yield
end
foo true { puts "hi" }
foo false { puts "hi" }

To pass arguments to a block, you put the arguments after the yield, e.g., yield 7 or yield(8,"str").

Using this approach, the fact that a method may expect a block is implicit; it is just that its body might
use yield. An error will result if yield is used and no block was passed. The behavior when the block and
the yield disagree on the number of arguments is somewhat flexible and not described in full detail here.
A method can use the block_given? primitive to see if the caller provided a block. You are unlikely to use
this method often: If a block is needed, it is conventional just to assume it is given and have yield fail if it is
not. In situations where a method may or may not expect a block, often other regular arguments determine
whether a block should be present. If not, then block_given? is appropriate.

Full Closures: The Proc Class

Blocks are not quite closures because they are not objects. We cannot store them in a field, pass them as
a regular method argument, assign them to a variable, put them in an array, etc. (Notice in Haskell and
Racket, we could do the equivalent things with closures.) However, Ruby has “real” closures too: The class
Proc has instances that are closures. The method call in Proc is how you apply the closure to arguments,
for example x.call (for no arguments) or x.call(3,4).

To make a Proc out of a block, just write lambda { ... } where{ ... }isany block. Interestingly, lambda
is not a keyword. It is just a method in class Object (and every class is a subclass of Object, so lambda is
available everywhere) that creates a Proc out of a block it is passed. You can define your own methods that
do this too, but we won’t go into the syntax that accomplishes this.

A Recursive (But Unnecessary) Example

Consider a linked-list class called MyList that uses instance variables @head and @tail in the expected ways,
using the nil object to represent the empty-list. (The code accompanying these notes shows such a class
with several useful methods.) One would not use such a class in typical Ruby code since the Array class is
already plenty flexible to serve for purposes where in less dynamic languages we would use arrays or tuples
or lists. After all, there are methods in Array for adding elements at the beginning, extracting the slice that
omits the first element, mapping over an array, etc. But a linked-list still makes a useful example.

Suppose we want to implement a map method for MyList that works like the common map function from
functional programming: It builds a new list of the same length by applying a caller-provided operation to



each element. Using a Proc object leads to a straightforward solution:

def map proc
if Otail.nil?
MyList.new(proc.call(@head), nil)
else
MyList.new(proc.call(@head), @tail.map(proc))
end
end

As a side-note, notice that a more object-oriented approach would be for the NilClass (the class of nil) to
also have a map method that returns nil. If it did (or if we added it), then our method in MyList could just
be:

def map proc
MyList.new(proc.call(@head), @tail.map(proc))
end

In Ruby, it is conventional to use blocks instead of Proc objects. One approach would be to provide callers
a map method that took a block, used lambda to create a Proc and then used the code above as a private
recursive helper method named something like map_helper. The reason for doing this is that we cannot pass
the block we are given to a recursive call since we have no “name” for the block — we can only call yield.

But there is a way to implement map using only blocks. We show the solution followed by an explanation:

def map
if O@tail.nil?
MyList.new(yield(@head), nil)
else
MyList.new(yield(@head), @tail.map {l|x| yield x})
end
end

The key trick is {1x| yield x}, which passes the recursive call a new block that, when yield is called on
it will then yield to the block passed to this method, which is what we wanted. This is analogous to the
unnecessary function wrapping we studied in functional languages (do not write fn x => £ x because you
can write £), but in this case, the wrapping is necessary because there is no name like £ for the current block.
It may depend on the Ruby implementation whether or not this technique is efficient.

As with the Proc solution, a more object-oriented approach would add a map method to NilClass; this is
orthogonal to blocks versus Proc.

Subclassing, Inheritance, and Dynamic Dispatch
Basic Idea and Terminology

Subclassing is an essential feature of class-based OOP. If class C is a subclass of D, then every instance of
C is also an instance of D. The definition of C inherits the methods of D, i.e., they are part of C’s definition
too. Moreover, C can extend by defining new methods that C has and D does not. And it can override
methods, by changing their definition from the inherited definition. In Ruby, this is much like in Java. In
Java, a subclass also inherits the field definitions of the superclass, but in Ruby fields are not part of a class
definition because each object instance just creates its own instance variables.

Every class in Ruby except Object has one superclass. The classes form a tree where each node is a class
and the parent is its superclass. The Object class is the root of the tree. In class-based languages, this is



called the class hierarchy. By the definition of subclassing, a class has all the methods of all its ancestors in
the tree (i.e., all nodes between it and the root, inclusive), subject to overriding.

Some Ruby Specifics

e A Ruby class definition specifies a superclass with class C < D ... end to define a new class C with
superclass D. Omitting the < D implies < Object, which is what our examples so far have done.

e Ruby’s built-in methods for reflection can help you explore the class hierarchy. Every object has a
class method that returns the class of the object. Consistently, if confusingly at first, a class is itself
an object in Ruby (after all, every value is an object). The class of a class is Class. This class defines
a method superclass that returns the superclass.

e Every object also has methods is_a? and instance_of?. The method is_a? takes a class (e.g.,
x.is_a? Integer) and returns true if the receiver is an instance of Integer or any (transitive) subclass
of Integer, i.e., if it is below Integer in the class hierarchy. The method instance_of? is similar but
returns true only if the receiver is an instance of the class exactly, not a subclass. Note that in Java
the primitive instanceof is analogous to Ruby’s is_a?.

Using methods like is_a? and instanceof is “less object-oriented” and therefore often not preferred style.
They are in conflict with duck typing.

A First Example: Point and ColorPoint

Here are definitions for simple classes that describe simple two-dimensional points and a subclass that adds
a color (just represented with a string) to instances.

class Point
attr_reader :x, :y
attr_writer :x, :y
def initialize(x,y)

0x = x
@y =y
end

def distFromOrigin
Math.sqrt(@x * @x + Qy * Qy)
end
def distFromOrigin2
Math.sqrt(x * x + y * y)
end
end
class ColorPoint < Point
attr_reader :color
attr_writer :color
def initialize(x,y,c="clear")
super(x,y)
@color = c
end
end

There are many ways we could have defined these classes. Our design choices here include:

e We make the @x, @y, and @color instance variables mutable, with public getter and setter methods.



e The default “color” for a ColorPoint is "clear".

e For pedagogical purposes revealed below, we implement the distance-to-the-origin two different ways.
The distFromOrigin method accesses instance variables directly whereas distFromOrigin2 uses the
getter methods on self. Given the definition of Point, both will produce the same result.

The initialize method in ColorPoint uses the super keyword, which allows an overriding method to call
the method of the same name in the superclass. This is not required when constructing Ruby objects, but
it is often desired.

Given the existence of Point, defining ColorPoint is good style because it allows us to reuse much of our
work from Point and it makes sense to treat any instance of ColorPoint as though it “is a” Point. But it
is worth considering three alternative ways to define the ColorPoint class.

First, we could just define ColorPoint “from scratch,” copying over (or retyping) the code from Point.
In a dynamically typed language, the difference in semantics (as opposed to style) is small: instances of
ColorPoint will now return false if sent the message is_a? with argument Point, but otherwise they will
work the same. In languages like Java, superclasses have effects on static typing. One advantage of not
subclassing Point is that any later changes to Point will not affect ColorPoint — in general in class-based
OQP, one has to worry about how changes to a class will affect any subclasses.

Second, we could have ColorPoint be a subclass of Object but have it contain an instance variable, call
it @pt, holding an instance of Point. Then it would need to define all of the methods defined in Point to
forward the message to the object in @pt. Here are two examples, omitting all the other methods (x=, y, y=,
distFromOrigin, distFromOrigin2):

def initialize(x,y,c="clear")
Opt = Point.new(x,y)
Qcolor = ¢

end

def x
Opt.x

end

This approach is bad style since again subclassing is shorter and we want to treat a ColorPoint as though
it “is a” Point. But in general, many programmers in object-oriented languages overuse subclassing. In
situations where you are making a new kind of data that includes a pre-existing kind of data as a separate
sub-part of it, this instance-variable approach is better style.

Third, in Ruby, we can extend and modify classes with new methods. So we could simply change the Point
class by replacing its initialize method and adding getter/setter methods for @color. This would be
appropriate only if every Point object, including instances of all other subclasses of Point, should have a
color.

Simple Overriding and Three-Dimensional Points

Now let’s consider a different subclass of Point, which is for three-dimensional points:

class ThreeDPoint < Point
attr_reader :z
attr_writer :z
def initialize(x,y,z)
super (x,y)
0z = z



end
def distFromOrigin
d = super
Math.sqrt(d * d + @z * @z)
end
def distFromOrigin2
d = super
Math.sqrt(d * d + z * z)
end
end

Here, the code-reuse advantage is limited to inheriting methods x, x=, y, and y=, as well as using other
methods in Point via super. Notice that in addition to overriding initialize, we used overriding for
distFromOrigin and distFromOrigin2.

Computer scientists have been arguing for decades about whether this subclassing is good style. On the one
hand, it does let us reuse quite a bit of code. On the other hand, one could argue that a ThreeDPoint is not
conceptually a (two-dimensional) Point, so passing the former when some code expects the latter could be
inappropriate. Others say a ThreeDPoint is a Point because you can “think of it” as its projection onto the
plane where z equals 0. We will not resolve this legendary argument, but you should appreciate that often
subclassing is bad/confusing style even if it lets you reuse some code in a superclass.

The argument against subclassing is made stronger if we have a method in Point like distance that takes
another (object that behaves like a) Point and computes the distance between the argument and self.
If ThreeDPoint wants to override this method with one that takes another (object that behaves like a)
ThreeDPoint, then ThreeDPoint instances will not act like Point instances: their distance method will
fail when passed an instance of Point.

More Interesting Overriding (Dynamic Dispatch) with Polar Points

The final subclass of Point we will define describes objects that behave equivalently to instances of Point
(except for the arguments to initialize) but use an internal representation in terms of polar coordinates
(radius and angle):

class PolarPoint < Point
def initialize(r,theta)

@r = r

@theta = theta
end
def x

@r * Math.cos(@theta)
end
def y

@r * Math.sin(@theta)
end
def x= a

b = y # avoids multiple calls to y method
@theta = Math.atan(b / a)
@r = Math.sqrt(a*a + b*b)
self
end
def y= b
a = y # avoid multiple calls to y method



O@theta = Math.atan(b / a)
@r = Math.sqrt(a*a + b*b)
self
end
def distFromOrigin
Or
end
# distFromOrigin2 already works!!
end

Notice instances of PolarPoint do not have instance variables @x and @y, but the class does override the x,
x=, y, and y= methods so that clients cannot tell the implementation is different: they can use instances of
Point and PolarPoint interchangeably. A similar example in Java would still have fields from the superclass,
but would not use them. The advantage of PolarPoint over Point, which admittedly is for sake of example,
is that distFromOrigin is simpler / more efficient.

The key point of this example is that the subclass does not override distFromOrigin2, but the
inherited method works correctly. To see why, consider the definition in the superclass:

def distFromOrigin2
Math.sqrt(x * x + y * y)
end

Unlike the definition of distFromOrigin, this method uses other method calls for the arguments to the
multiplications. Recall this is just syntactic sugar for:

def distFromOrigin2
Math.sqrt(self.x() * self.x() + self.y() * self.y())
end

In the superclass, this can seem like an unnecessary complication since self.x() is just a method that
returns @x and methods of Point can access @x directly, as distFromOrigin does.

However, as you learned when you studied Java’s support for class-based OOP, overriding methods x and y in
a subclass of Point changes how distFromOrigin2 behaves in instances of the subclass. Given a PolarPoint
instance, its distFromOrigin2 method is defined with the code above, but when called, self.x and self.y
will call the methods defined in PolarPoint, not the methods defined in Point.

This semantics goes by many names, including dynamic dispatch, late binding, and virtual method calls.
There is nothing quite like it in functional programming, since the way self is treated in the environment
is special, as the next lecture considers in more detail.



