
10/17/12 

1 

CSE341: Programming Languages 

Structs, Implementing Languages, 
Implementing Higher-Order Functions 

Alan Borning  
(slides “borrowed” from Dan Grossman) 

Fall 2012 

An aside - Parenthesis bias 

•  If you look at the HTML for a web page, it takes the same 
approach: 
–  (foo  written <foo> 
–  ) written </foo> 

•  But for some reason, LISP/Scheme/Racket is the target of 
subjective parenthesis-bashing 
–  Curiously, often by people who have no problem with HTML 
–  You are entitled to your opinion about syntax, but a good 

historian wouldn’t refuse to study a country where he/she 
didn’t like people’s accents 

Fall 2012 2 CSE341: Programming Languages 

Fall 2012 3 CSE341: Programming Languages 

http://xkcd.com/297/ 

LISP invented around 1959 by  
John McCarthy (9/4/27-10/23/2011) 

•  Invented garbage collection 

Review 

•  Given pairs and dynamic typing, you can code up “one-of types” 
by using first list-element like a constructor name: 

•  But much better and more convenient is Racket’s structs 
–  Makes a new dynamic type (pair? answers false) 
–  Provides constructor, predicate, accessors 

Fall 2012 4 CSE341: Programming Languages 

(define (const i)   (list 'const i)) 
(define (add e1 e2) (list 'add e1 e2)) 
(define (negate e)  (list 'negate e)) 

(struct const (i)   #:transparent) 
(struct add (e1 e2) #:transparent) 
(struct negate (e)  #:transparent) 

Defines trees 

•  Either lists or structs (we’ll use structs) can then let us build 
trees to represent compound data such as expressions 

•  Since Racket is dynamically typed, the idea that a set of 
constructors are variants for “an expression datatype” is in our 
heads / comments  

Fall 2012 5 CSE341: Programming Languages 

(add (const 4) 
     (negate (add (const 1) 
                  (negate (const 7))))) 

Haskell’s view of Racket’s “type system” 

One way to describe Racket is that it has “one big datatype” 
–  All values have this same one type 

•  Constructors are applied implicitly (values are tagged) 
–  42 is implicitly “int constructor with 42” 

•  Primitives implicitly check tags and extract data, raising errors for 
wrong constructors 
–  + is implicitly “check for int constructors and extract data” 
–  [Actually Racket has a numeric tower that + works on] 

•  Built-in: numbers, strings, booleans, pairs, symbols, procedures, etc. 
–  Each struct creates a new constructor, a feature many dynamic 

languages do not have 
–  (struct …) can be neither a function nor a macro 

Fall 2012 6 CSE341: Programming Languages 

inttag  42 



10/17/12 

2 

Implementing PLs 

Most of the course is learning fundamental concepts for using PLs 
–  Syntax vs. semantics vs. idioms 
–  Powerful constructs like pattern-matching, closures, 

dynamically typed pairs, macros, … 

An educated computer scientist should also know some things 
about implementing PLs 

–  Implementing something requires fully understanding its 
semantics 

–  Things like closures and objects are not “magic” 
–  Many programming tasks are like implementing PLs 

•  Example: rendering a document (“program” is the 
[structured] document and “pixels” is the output) 

Fall 2012 7 CSE341: Programming Languages 

Ways to implement a language 

Two fundamental ways to implement a PL A 

•  Write an interpreter in another language B 
–  Better names: evaluator, executor 
–  Take a program in A and produce an answer (in A) 

•  Write a compiler in another language B to a third language C 
–  Better name: translator 
–  Translation must preserve meaning (equivalence) 

We call B the metalanguage; crucial to keep A and B straight 

Very first language needed a hardware implementation 

Fall 2012 8 CSE341: Programming Languages 

Reality more complicated 

Evaluation (interpreter) and translation (compiler) are your options 
–  But in modern practice have both and multiple layers 

A plausible example: 
–  Java compiler to bytecode intermediate language 
–  Have an interpreter for bytecode (itself in binary), but 

compile frequent functions to binary at run-time 
–  The chip is itself an interpreter for binary 

•  Well, except these days the x86 has a translator in 
hardware to more primitive micro-operations that it then 
executes 

Racket uses a similar mix 

Fall 2012 9 CSE341: Programming Languages 

Implementing a language 

"(fn x => x + x) 7" 

Fall 2012 10 CSE341: Programming Languages 

Parsing Call 

Function 

+ 

Negate 

Constant 

4 

x 

x x 
Var Var 

Static checking 
(what checked 
  depends on PL) 

Possible  
Errors / 
warnings 

Rest of  
implementation 

Possible  
Errors / 
warnings 

Skipping those steps 

Alternately, we can embed our language inside (data structures) in 
the metalanguage 

–  Skip parsing: Use constructors instead of just strings 
–  These abstract syntax trees (ASTs) are already ideal 

structures for passing to an interpreter 

We can also, for simplicity, skip static checking 
–  Assume subexpressions are actually subexpressions 

•  Do not worry about (add #f “hi”) 
–  For dynamic errors in the embedded language, interpreter 

can give an error message 
•  Do worry about (add (fun …) (int 14)) 

Fall 2012 11 CSE341: Programming Languages 

The arith-exp example 

This embedding approach is exactly what we did for the PL of 
arithmetic expressions: 

Note: So simple there are no dynamic type errors in the interpreter  

Fall 2012 12 CSE341: Programming Languages 

(struct const (i)   #:transparent) 
(struct add (e1 e2) #:transparent) 
(struct negate (e)  #:transparent) 

(add (const 4) 
     (negate (add (const 1) 
                  (negate (const 7))))) 

(define (eval-exp e) … ) 



10/17/12 

3 

The interpreter 
An interpreter takes programs in the language and produces values 
(answers) in the language 

–  Typically via recursive helper functions with cases 
–  This example is so simple we don’t need a helper and can 

assume all recursive results are constants 

Fall 2012 13 CSE341: Programming Languages 

(define (eval-exp e) 
   (cond  
     [(const? e) e] 
     [(add? e)  
      (const (+ (const-i (eval-exp (add-e1 e))) 
                (const-i (eval-exp (add-e2 e)))))] 
     [(negate? e) 
      (const (- (const-i (eval-exp (negate-e e)))))] 
     [#t (error “eval-exp expected an expression”)])) 

“Macros” 

Another advantage of the embedding approach is we can use the 
metalanguage to define helper functions that create programs in our 
language 

–  They generate the (abstract) syntax 
–  Result can then be put in a larger program or evaluated 
–  This is a lot like a macro, using the metalanguage as our 

macro system 

Example:  
  All this does is create a program that has four constant expressions: 

Fall 2012 14 CSE341: Programming Languages 

(define (triple x) (add x (add x x))) 

(define p (add (const 1) (triple (const 2)))) 

What’s missing 

Two very interesting features missing from our arithmetic-
expression language: 

–  Local variables 
–  Higher-order functions with lexical scope 

How to support local variables: 
–  Interpreter helper function(s) need to take an environment 
–  As we have said since lecture 1, the environment maps 

variable names to values 
•  A Racket association list works well enough 

–  Evaluate a variable expression by looking up the name 
–  A let-body is evaluated in a larger environment 

Fall 2012 15 CSE341: Programming Languages 

Higher-order functions 

The “magic”: How is the “right environment” around for lexical 
scope when functions may return other functions, store them in 
data structures, etc.? 

Lack of magic: The interpreter uses a closure data structure (with 
two parts) to keep the environment it will need to use later 

Evaluate a function expression: 
–  A function is not a value; a closure is a value 
–  Create a closure out of (a) the function and (b) the current 

environment 

Evaluate a function call: 
–  … 

Fall 2012 16 CSE341: Programming Languages 

Function calls 

•  Evaluate 1st subexpression to a closure with current environment 
•  Evaluate 2nd subexpression to a value with current environment 
•  Evaluate closure’s function’s body in the closure’s environment, 

extended to map the function’s argument-name to the argument-
value 
–  And for recursion, function’s name to the whole closure 

This is the same semantics we learned a few weeks ago “coded up” 

Given a closure, the code part is only ever evaluated using the 
environment part (extended), not the environment at the call-site 

Fall 2012 17 CSE341: Programming Languages 

Is that expensive? 

•  Time to build a closure is tiny: a struct with two fields 

•  Space to store closures might be large if environment is large 
–  But environments are immutable, so natural and correct to 

have lots of sharing, e.g., of list tails (cf. earlier lectures) 

•  Alternative: Homework 5 challenge problem is to, when creating 
a closure, store a possibly-smaller environment holding only the 
variables that are free variables in the function body 
–  Free variables: Variables that occur, not counting shadowed 

uses of the same variable name 
–  A function body would never need anything else from the 

environment 

Fall 2012 18 CSE341: Programming Languages 



10/17/12 

4 

Free variables examples 

(lambda () (+ x y z)) 

(lambda (x) (+ x y z)) 

(lambda (x) (if x y z)) 

(lambda (x) (let ([y 0]) (+ x y z))) 

(lambda (x y z) (+ x y z)) 

(lambda (x) (+ y (let ([y z]) (+ y y)))) 

Fall 2012 19 CSE341: Programming Languages 

Free variables examples 

(lambda () (+ x y z))   ; x y z 

(lambda (x) (+ x y z))  ; y z 

(lambda (x) (if x y z)) ; y z 

(lambda (x) (let ([y 0]) (+ x y z))) ; z 

(lambda (x y z) (+ x y z)) ; {} 

(lambda (x) (+ y (let ([y z]) (+ y y)))) ; y z 

Fall 2012 20 CSE341: Programming Languages 

Free variables examples – mini-exercises 

(lambda () (+ j 3)) 

((lambda (j) (+ j k 3)) 

(lambda (j) (let ([k 0]) (+ j k 3))) 

Fall 2012 21 CSE341: Programming Languages 

Compiling higher-order functions 

•  Key to the interpreter approach: Interpreter helper function takes 
an environment argument 
–  Recursive calls can use a different environment 

•  Can also compile higher-order functions by having the 
translation produce “regular” functions (like in C or assembly) 
that all take an extra explicit argument called “environment” 

•  And compiler replaces all uses of free variables with code that 
looks up the variable using the environment argument 
–  Can make these fast operations with some tricks 

•  Running program still creates closures and every function call 
passes the closure’s environment to the closure’s code 

Fall 2012 22 CSE341: Programming Languages 


