10/17/12

An aside - Parenthesis bias

« If you look at the HTML for a web page, it takes the same
approach:
- (foo written <foo>

CSE341: Programming Languages _) wiitten</£o0>

« But for some reason, LISP/Scheme/Racket is the target of
Structs, Implementing Languages, subjective parenthesis-bashing
|mp|ementing Higher_order Functions — Curiously, often by people who have no problem with HTML
— You are entitled to your opinion about syntax, but a good
historian wouldn’t refuse to study a country where he/she

Alan Borning didn’t like people’s accents
(slides “borrowed” from Dan Grossman)
Fall 2012
Fall 2012 CSE341: Programming Languages 2
Review

LISP 15 OVER HALFA | [T WONDER IF THECICLES THESE ARE YOUR
CENTURYOLD AND IT | | WILL CONTINUE FOREVER FATHER' PARENTHESES
STILL HAS THIS PERFECT | [~ ——|

TIMELESS AIRABOUTIT.

ﬂ/
'A FEV CODERS FROMEACK
NEW GENERATION RE-
DISCOVERING THE LISP ARG,

http://xked.com/297/ « But much better and more convenient is Racket’s structs
— Makes a new dynamic type (pair? answers false)
— Provides constructor, predicate, accessors

P « Given pairs and dynamic typing, you can code up “one-of types”
O by using first list-element like a constructor name:

ELEGANT
WEAPONS

FOR AMORE.... CIVIUZED AGE.

(define (const i) (list 'const 1i))
(define (add el e2) (list 'add el e2))
(define (negate e) (list 'negate e))

LISP invented around 1959 by

John McCarthy (9/4/27-10/23/2011) (struct const (i) #:transparent)
« Invented garbage collection (struct add (el e2) #:transparent)
(struct negate (e) #:transparent)

Fall 2012 CSE341: Programming Languages 3 Fall 2012 CSE341: Programming Languages 4

Defines trees Haskell’s view of Racket’s “type system”

One way to describe Racket is that it has “one big datatype”
— All values have this same one type

« Constructors are applied implicitly (values are tagged)
(add (const 4) - 42 is implicitly “int constructor with 42”)

(negate (add (const 1)
(negate (const 7))))) « Primitives implicitly check tags and extract data, raising errors for

wrong constructors
- + is implicitly “check for int constructors and extract data”
— [Actually Racket has a numeric tower that + works on]

< Either lists or structs (we’ll use structs) can then let us build
trees to represent compound data such as expressions

« Since Racket is dynamically typed, the idea that a set of
constructors are variants for “an expression datatype” is in our
heads / comments + Built-in: numbers, strings, booleans, pairs, symbols, procedures, etc.

— Each struct creates a new constructor, a feature many dynamic
languages do not have

- (struct ..) can be neither a function nor a macro

Fall 2012 CSE341: Programming Languages 5 Fall 2012 CSE341: Programming Languages 6

10/17/12

Implementing PLs

Most of the course is learning fundamental concepts for using PLs
— Syntax vs. semantics vs. idioms
— Powerful constructs like pattern-matching, closures,
dynamically typed pairs, macros, ...

An educated computer scientist should also know some things
about implementing PLs
— Implementing something requires fully understanding its
semantics

Things like closures and objects are not “magic”
— Many programming tasks are like implementing PLs

« Example: rendering a document (“program” is the
[structured] document and “pixels” is the output)

Fall 2012 CSE341: Programming Languages 7

Ways to implement a language

Two fundamental ways to implement a PL A

« Write an interpreter in another language B
— Better names: evaluator, executor
— Take a program in A and produce an answer (in A)

« Write a compiler in another language B to a third language C
— Better name: translator
— Translation must preserve meaning (equivalence)
We call B the metalanguage; crucial to keep A and B straight
Very first language needed a hardware implementation

Fall 2012 CSE341: Programming Languages 8

Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options
— But in modern practice have both and multiple layers

A plausible example:
— Java compiler to bytecode intermediate language

— Have an interpreter for bytecode (itself in binary), but
compile frequent functions to binary at run-time

— The chip is itself an interpreter for binary

» Well, except these days the x86 has a translator in
hardware to more primitive micro-operations that it then
executes

Racket uses a similar mix

Fall 2012 CSE341: Programming Languages 9

Implementing a language

Possible
"(fn x => x + x) 7" Errors /

warnings
Parsing Call
—

Function Negate

x + Cons ::ant

Possible
Errors /

x X . warnings
Static checkin
(what checked Rest of

depends on PL) implementation

Viar Vlar 4

Fall 2012 CSE341: Programming Languages 10

Skipping those steps

Alternately, we can embed our language inside (data structures) in
the metalanguage
— Skip parsing: Use constructors instead of just strings

— These abstract syntax trees (ASTs) are already ideal
structures for passing to an interpreter

We can also, for simplicity, skip static checking
— Assume subexpressions are actually subexpressions
» Do not worry about (add #£ “hi”)
— For dynamic errors in the embedded language, interpreter
can give an error message
« Do worry about (add (fun ..) (int 14))

Fall 2012 CSE341: Programming Languages 1

The arith-exp example

This embedding approach is exactly what we did for the PL of
arithmetic expressions:

(struct const (i) #:transparent)
(struct add (el e2) #:transparent)
(struct negate (e) #:transparent)
(add (const 4)

(negate (add (const 1)
(negate (const 7)))))

(define (eval-exp e) ..)

Note: So simple there are no dynamic type errors in the interpreter

Fall 2012 CSE341: Programming Languages 12

10/17/12

The interpreter

An interpreter takes programs in the language and produces values
(answers) in the language
— Typically via recursive helper functions with cases
— This example is so simple we don'’t need a helper and can
assume all recursive results are constants

(define (eval-exp e)
(cond
[(const? e) e]
[(add? e)
(const (+ (const-i (eval-exp (add-el e)))
(const-i (eval-exp (add-e2 e)))))]
[(negate? e)
(const (- (const-i (eval-exp (negate-e e)))))]
[#t (error “eval-exp expected an expression”)]))

Fall 2012 CSE341: Programming Languages 13

“Macros”

Another advantage of the embedding approach is we can use the
metalanguage to define helper functions that create programs in our
language
— They generate the (abstract) syntax
— Result can then be put in a larger program or evaluated
— This is a lot like a macro, using the metalanguage as our
macro system

Example:
All this does is create a program that has four constant expressions:

(define (triple x) (add x (add x x)))

(define p (add (const 1) (triple (const 2))))

Fall 2012 CSE341: Programming Languages 14

What’s missing

Two very interesting features missing from our arithmetic-
expression language:

— Local variables

— Higher-order functions with lexical scope

How to support local variables:
— Interpreter helper function(s) need to take an environment
— As we have said since lecture 1, the environment maps
variable names to values
» A Racket association list works well enough
— Evaluate a variable expression by looking up the name
— Alet-body is evaluated in a larger environment

Fall 2012 CSE341: Programming Languages 15

Higher-order functions

The “magic”: How is the “right environment” around for lexical
scope when functions may return other functions, store them in
data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with
two parts) to keep the environment it will need to use later

Evaluate a function expression:
— A function is not a value; a closure is a value
— Create a closure out of (a) the function and (b) the current
environment

Evaluate a function call:

Fall 2012 CSE341: Programming Languages 16

Function calls

« Evaluate 1st subexpression to a closure with current environment
« Evaluate 2nd subexpression to a value with current environment
« Evaluate closure’s function’s body in the closure’s environment,
extended to map the function’s argument-name to the argument-
value
— And for recursion, function’s name to the whole closure

This is the same semantics we learned a few weeks ago “coded up”
Given a closure, the code part is only ever evaluated using the

environment part (extended), not the environment at the call-site

Fall 2012 CSE341: Programming Languages 17

Is that expensive?

« Time to build a closure is tiny: a struct with two fields

« Space to store closures might be large if environment is large

— But environments are immutable, so natural and correct to
have lots of sharing, e.g., of list tails (cf. earlier lectures)

« Alternative: Homework 5 challenge problem is to, when creating
a closure, store a possibly-smaller environment holding only the
variables that are free variables in the function body

— Free variables: Variables that occur, not counting shadowed
uses of the same variable name

— A function body would never need anything else from the
environment

Fall 2012 CSE341: Programming Languages 18

Free variables examples

(lambda () (+ x y z))

(lambda (x) (+ x y z))

(lambda (x) (if x y z))

(lambda (x) (let ([y 0]) (+ xy 2z)))
(lambda (x y z) (+ x y 2))

(lambda (x) (+ y (let ([y z]) (+y ¥))))

Fall 2012 CSE341: Programming Languages 19

10/17/12

Free variables examples

(lambda () (+ xy z)) ;xyz

(lambda (x) (+ xy z)) ;yz

(lambda (x) (if x y 2z)) ; y z

(lambda (x) (let ([y 0]) (+ xy 2z))) ; z
(lambda (x y z) (+ xy z)) ; {}

(lambda (x) (+y (let ([y z]) (+y ¥)))) ; vy z

Fall 2012 CSE341: Programming Languages

20

Free variables examples — mini-exercises

(lambda () (+ j 3))
((lambda (j) (+ 3 k 3))

(lambda (j) (let ([k 0]) (+ j k 3)))

Fall 2012 CSE341: Programming Languages 21

Compiling higher-order functions

« Key to the interpreter approach: Interpreter helper function takes

an environment argument
— Recursive calls can use a different environment

« Can also compile higher-order functions by having the
translation produce “regular” functions (like in C or assembly)
that all take an extra explicit argument called “environment”

« And compiler replaces all uses of free variables with code that
looks up the variable using the environment argument

— Can make these fast operations with some tricks

» Running program still creates closures and every function call
passes the closure’s environment to the closure’s code

Fall 2012 CSE341: Programming Languages

22

