
Constraints from ThingLab to OS Lion

Some research topics:

• a theory of hard and soft constraints

• various constraint solvers (notable ones:
DeltaBlue, Cassowary)

• constraint toolkits

• constraints in logic programming languages, con-
straint imperative languages
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Constraints for Layout

• Many layout problems can be expressed using
constraints. Need both equalities and inequal-
ities, and also preferences as well as require-
ments.

• Need to handle change over time (moving, resiz-
ing, etc.)

• We need to handle cycles (both simultaneous
equalities and simultaneous inequalities).
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Constraint Hierarchy Formalism

Allow both required and preferential constraints (hard
and soft constraints). Benefits of a declarative theory:
can argue convincingly that the solutions from a solver
are correct (or not).

Important uses in layout:

• stability when moving a figure (use weak con-
straints that things stay where they are)

• handling user inputs that are outside the range of
permitted values

• balancing conflicting desires (in layout and else-
where)
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Constraint Hierarchy Solutions

There can be an arbitrary number of constraint
strengths.

In finding a solution, we must satisfy the required con-
straints. We try to satisfy the stronger non-required
constraints in preference to the weaker ones.

required x+ y = 10
strong x = 8
weak x = 0
weak y = 0

Solution is {x 7→ 8, y 7→ 2}
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Mini-Exercise #1

What is the solution to these constraints?

required x = y+1
strong y = 10
weak x = 5
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Mini-Exercise #1 — Solution

required x = y+1
strong y = 10
weak x = 5

Solution is {x 7→ 11, y 7→ 10}
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Error in Satisfying a Constraint

If we can’t satisfy a preferential constraint exactly, we
try to satisfy it as well as possible.

required 10 ≤ x ≤ 20
weak x = 5

The error for x = 5 is |x− 5|.

The solution is {x 7→ 10}.
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Mini-Exercise #2

What is the solution to these constraints?

required 0 ≤ x ≤ 5
strong x ≥ 3
weak x = 0
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Mini-Exercise #2 — Solution

required 0 ≤ x ≤ 5
strong x ≥ 3
weak x = 0

The solution is {x 7→ 3}.
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Conflicting Constraints

Two conflicting constraints with the same strength:

required x+ y = 10
strong x = 0
strong y = 0

There are various ways of trading off constraints in
this situation.

The Cassowary solver will find either
{x 7→ 0, y 7→ 10} or
{x 7→ 10, y 7→ 0}.

A least-squares solver (e.g. QOCA) will find
{x 7→ 5, y 7→ 5}.
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Mini-Exercise #3

What is the solution to these constraints?

weak x = 10
weak x = 20

Consider both Cassowary and a least-squares solu-
tion.
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Mini-Exercise #3 — Solution for Cassowary

weak x = 10
weak x = 20

Cassowary: {x 7→ 10} or {x 7→ 20}.

The error is | x− 10 | + | x− 20 |.

error for x = 10 is 10
error for x = 12 is 10
error for x = 20 is 10
(actually it’s 10 for x ∈ [10,20])

error for x = 21 is 12
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Mini-Exercise #3 — Solution for Least-Squares

weak x = 10
weak x = 20

Least-squares: {x 7→ 15}.

The error is (x− 10)2 + (x− 20)2.

error for x = 15 is 50
error for x = 10 is 100
error for x = 0 is 500
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The Cassowary Constraint Solver

Alan Borning

this was joint work with:
Greg Badros (University of Washington,

now at Facebook)
Kim Marriott (Monash University)

Peter Stuckey (University of Melbourne)
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Linear Programming

Linear programming is concerned with solving the fol-
lowing problem.

x1, . . . , xn are non-negative real-valued variables:
xi ≥ 0 for 1 ≤ i ≤ n.

There are m linear equality or inequality constraints
over the xi, each of the form:

a1x1 + . . .+ anxn = c,

a1x1 + . . .+ anxn ≤ c,

or a1x1 + . . .+ anxn ≥ c.

Find values for the xi that minimizes the value of the
objective function

c+ d1x1 + . . .+ dnxn
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Government Health Warning

As you see, the subject of linear programming is
surrounded by notational and terminological thickets.
Both of these thorny defenses are lovingly cultivated
by a coterie of stern acolytes who have devoted them-
selves to the field.

– Numerical Recipes, page 424
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Simplex Algorithm — Executive Summary

1. Convert the problem to simplex form by using
slack variables to convert inequalities to equali-
ties. Example: replace x ≤ 10 by x+ s = 10.
(Remember that both x and s must be non-
negative.)

2. Find a solution to the constraints (not necessar-
ily the optimal one). Finding this solution will in-
volve putting the problem into a kind of normal
form called basic feasible solved form.

3. Try to decrease the value of the objective function
using a matrix operation on the solved form called
a pivot.

4. Keep pivoting until the value of the objective func-
tion can be decreased no further.
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Basic Feasible Solved Form

The problem is in basic feasible solved form if each
equation is of the form

x0 = c+ a1x1 + . . .+ anxn

where the variable x0 does not occur in any other
equation or in the objective function, and c is non-
negative.

The set of such equations is called the tableau.

The variable x0 is basic and the other variables in the
equation are parameters.

A problem in basic feasible solved form defines a ba-
sic feasible solution. We can read off this solution by
setting each parametric variable to 0 and each basic
variable to the value of the constant in the right-hand
side.
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Problems with Using Simplex

Incrementality:

• resolving the constraints for new input values, e.g.
after moving the mouse

• incremental addition and deletion of constraints

Other issues:

• variables that may take on negative values

• non-linear objective function
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Allowing Unrestricted Variables

The simplex algorithm imposes a constraint x ≥ 0 on
all its variables.

To escape this restriction efficiently, we use an aug-
mented simplex algorithm with two tableaux: CU and
CS.

• CU : the unrestricted variable tableau

• CS: the simplex tableau. Only restricted variables
are allowed in CS.

We use the simplex algorithm to optimize the objective
function, based only on the equations in CS.

We will still be able to read off solutions from the two
tableaux as before.
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Augmented Simplex Form Example

Consider the constraints

−5 ≤ x ≤ 20
y+10 = x

Add slack variables:

−5+ s1 = x

x+ s2 = 20

y+10 = x

In augmented simplex form:

y = −15+ s1
x = −5+ s1
s2 = 25− s1

Solution: {y 7→ −15, x 7→ −5, s2 7→ 25, s1 7→ 0}.
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Handling Non-Required Constraints

Suppose the user wishes to edit xm in the diagram
and have xl and xr weakly stay where they are.

This adds the non-required constraints xm edit,
xl stay, and xr stay.

Suppose we are trying to move xm to position 50, and
that currently xl = 30, xm = 45, and xr = 60.
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Handling Non-Required Constraints (2)

The complete set of constraints:

required 2xm = xl + xr
required xl +10 ≤ xr
required xr ≤ 100
required −100 ≤ xl

strong xm = 50
weak xl = 30
weak xr = 60
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Objective Function

We combine the errors for each non-required con-
straint with a weight.

Objective function:

s|xm − 50|+ w|xl − 30|+ w|xr − 60|

where s and w are weights so that the strong con-
straint is always strictly more important than solving
any combination of weak constraints. This lets us find
a locally-error-better solution.

This objective function is non-linear.
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Symbolic Weights

s|xm − 50|+ w|xl − 30|+ w|xr − 60|

To avoid problems with choosing too small an s, rather
than a real number we use a symbolic weight and a
lexicographic ordering for comparing values:

[1,0]×|xm−50|+[0,1]×|xl−30|+[0,1]×|xr−60|

These symbolic weights are instances of a class
SymbolicWeight that understands the usual arithmetic
messages (+, *, =, ≤, etc), so that we can compare
symbolic weights, add two symbolic weights, multiply
a symbolic weight by a real, and so forth.
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Error Variables

The edit and the stay constraints will be represented
as equations of the form

v = α+ δ+v − δ−v

where δ+v and δ−v are non-negative variables repre-
senting the deviation of v from the desired value α.

If the constraint is satisfied both δ+v and δ−v will be 0.
Otherwise δ+v will be positive and δ−v will be 0 if v is
too big, or vice versa if v is too small.
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Non-Required Constraints for Augmented Sim-
plex

The constraints strong xm = 50, weak xl = 30, and
weak xr = 60 become:

xm = 50+ δ+xm − δ−xm
xl = 30+ δ+xl − δ

−
xl

xr = 60+ δ+xr − δ−xr

0 ≤ δ+xm, δ
−
xm, δ

+
xl , δ

−
xl
, δ+xr, δ

−
xr

The objective function is

minimize

[1,0]δ+xm + [1,0]δ−xm
+ [0,1]δ+xl + [0,1]δ−xl
+ [0,1]δ+xr + [0,1]δ−xr
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An Optimal Solution

minimize [0,10] + [1,2]δ+xm + [1,−2]δ−xm +

[0,2]δ−xl + [0,2]δ−xr subject to

xm = 50 +δ+xm −δ−xm
xl = 30 +δ+xl −δ−xl
xr = 70 +2δ+xm −2δ−xm −δ+xl +δ−xl
s1 = 30 +2δ+xm −2δ−xm −2δ+xl +2δ−xl
s3 = 30 −2δ+xm +2δ−xm +δ+xl −δ−xl
δ+xr = 10 +2δ+xm −2δ−xm −δ+xl +δ−xl +δ−xr
s2 = 40 +δ+xl −δ−xl

Old positions: {xl 7→ 30, xm 7→ 45, xr 7→ 60}
New positions: {xl 7→ 30, xm 7→ 50, xr 7→ 70}

The weak stay on xr is not satisfied.
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Incrementality: Resolving the Optimization Prob-
lem

Suppose the user is moving some part of a con-
strained figure with the mouse. Each time the screen
is refreshed we need to solve the constraints again —
so this needs to be fast!

The only difference between the successive problems
will be in the values of the constants in the edit and
stay constraints.

Suppose the user is editing xm. The user moves the
mouse to x = 60.

We wish to solve a new problem, with new values for
the edit and stay constraints:

strong xm = 60
weak xl = 30
weak xr = 70
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Incrementality: Resolving the Optimization Prob-
lem (2)

We want to modify the current tableau rather than
starting from scratch.

Steps:

1. Modify the tableau to reflect the new constants for
the stay constraints. No re-optimization required.

2. Modify the tableau to reflect the new constants for
the edit constraints. May need to re-optimize.
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Updating the Stay Constraints

Set certain constants in the tableau to 0.

In the example, we set the constant of the equation
for δ+xr to 0.

Result:

minimize [0,0]+[1,2]δ+xm+[1,−2]δ−xm+[0,2]δ−xl+
[0,2]δ−xr subject to

xm = 50 +δ+xm −δ−xm
xl = 30 +δ+xl −δ−xl
xr = 70 +2δ+xm −2δ−xm −δ+xl +δ−xl
s1 = 30 +2δ+xm −2δ−xm −2δ+xl +2δ−xl
s3 = 30 −2δ+xm +2δ−xm +δ+xl −δ−xl
δ+xr = 0 +2δ+xm −2δ−xm −δ+xl +δ−xl +δ−xr
s2 = 40 +δ+xl −δ−xl
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Updating the Edit Constraints

Increment constants for certain rows in the tableau.

Pick up xm with the mouse and move by 10 (from 50
to 60): add 10 times the coefficient of δ+xm to the con-
stant part of every row in which it occurs.

The modified tableau is

minimize [0,20] + [1,2]δ+xm + [1,−2]δ−xm +

[0,2]δ−xl + [0,2]δ−xr subject to

xm = 60 +δ+xm −δ−xm
xl = 30 +δ+xl −δ−xl
xr = 90 +2δ+xm −2δ−xm −δ+xl +δ−xl
s1 = 50 +2δ+xm −2δ−xm −2δ+xl +2δ−xl
s3 = 10 −2δ+xm +2δ−xm +δ+xl −δ−xl
δ+xr = 20 +2δ+xm −2δ−xm −δ+xl +δ−xl +δ−xr
s2 = 40 +δ+xl −δ−xl
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New Solution

The simplex tableau is feasible and already in optimal
form, and so we have incrementally resolved the prob-
lem by simply modifying constants in the tableaux.

New solution

{xl 7→ 30, xm 7→ 60, xr 7→ 90}

Sliding the midpoint rightwards has caused the right
point to slide rightwards as well, but twice as far.
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Another Edit

Move xm from 60 to 90. The updated tableau is

minimize [0,60] + [1,2]δ+xm + [1,−2]δ−xm +

[0,2]δ−xl + [0,2]δ−xr subject to

xm = 90 +δ+xm −δ−xm
xl = 30 +δ+xl −δ−xl
xr = 150 +2δ+xm −2δ−xm −δ+xl +δ−xl
s1 = 110 +2δ+xm −2δ−xm −2δ+xl +2δ−xl
s3 = −50 −2δ+xm +2δ−xm +δ+xl −δ−xl
δ+xr = 60 +2δ+xm −2δ−xm −δ+xl +δ−xl +δ−xr
s2 = 40 +δ+xl −δ−xl

The tableau is no longer in basic feasible solved form
(s2 is negative).

Intuition: xr should have stopped at the virtual wall
created by the xr ≤ 100 constraint, but in these
tableaux has crashed on through.
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Re-optimizing

In general, after updating the constants for the edit
constraints, the simplex tableau CS may no longer be
in basic feasible solved form, since some of the con-
stants may be negative.

In this case use the dual simplex algorithm to re-
optimize.

The dual simplex algorithm starts from an optimal and
infeasible solution. Each pivot moves toward feasibil-
ity, all the while maintaining optimality. We stop when
we reach feasibility.

(Contrast this with the primal simplex algorithm, where
we start from a feasible solution. Each pivot moves
toward optimality, all the while maintaining feasibility.
We stop when we reach optimality)
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After Pivoting

We perform a dual simplex pivot. Result:

minimize [0,60] + [1,2]δ+xm + [1,−2]δ−xm +

[0,2]δ−xl + [0,2]δ−xr subject to

xm = 90 +δ+xm −δ−xm
xl = 80 +s3 +2δ+xm −2δ−xm
xr = 100 −s3
s1 = 10 −2s3 −2δ+xm +2δ−xm
δ+xl = 50 +s3 +2δ+xm −2δ−xm +δ−xl
δ+xr = 10 −s3 +δ−xr
s2 = 90 +s3 +2δ+xm −2δ−xm

The tableau is now feasible and optimal.
Solution: {xl 7→ 80, xm 7→ 90, xr 7→ 100}.
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After Pivoting (2)

We slide the midpoint to the right.

Eventually the rightmost point hits the wall and the left
point then starts moving to satisfy the constraints.
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Benefits of Dual Simplex

Pivoting occurred when the right point xr came up
against a barrier.

If we picked up the midpoint xm with the mouse and
smoothly slid it rightwards, 1 pixel every screen re-
fresh, only one pivot would be required in moving from
50 to 95.

This illustrates why the dual optimization is well suited
to this problem and leads to efficient resolving.
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Incrementality: Adding and Deleting Constraints

We can incrementally add a constraint to an exist-
ing tableau, or delete an arbitrary constraint from a
tableau — no need to start from scratch.

Important use: adding an edit constraint to move a
part, then deleting that constraint when done moving.
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