CSE 341, Spring 2008, Lecture 4 Summary

Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of
all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

Programming languages need ways to describe data so that we can write programs that operate on that
data. We need base types such as int, string, bool, and unit. We also need ways to build compound types
from simpler types, such as tuples (pairs are 2-tuples, triples are 3-tuples, etc.), lists, and even function
types (=>). This lecture is about record types, which are much like tuples, and datatype bindings, which
are probably unlike anything you have seen before. Conceptually, this lecture is about describing data in
terms of and (“each-of” types), or (“one-of” types), and self-reference (“recursive” types).

Syntactically, an ML record is constructed via {f1=el, ..., f2=en} where f1, ... fn are field names
(sequences of letters) and el, ..., en are expressions. Exactly like tuples, the evaluation rules are to evaluate
the expressions to values and a record with values in all fields is itself a value. The only difference from
tuples is that the order of the fields does not matter; we use field names instead of “position” to determine
which field is which. Unlike in many languages, we do not need any sort of type declaration before we use
a record; we can just use whatever field names we want. The type of a record describes what fields it has
and what types those fields have. Again, field order does not matter; in fact, the read-eval-print loop always
alphabetizes field names before it prints a type. To extract a field foo from a record, we can use #foo e
where e evaluates to a record.

Tuples are, in fact, so much like records that they actually are records. When you write (7,"hi"),
that is exactly the same as writing {1=7, 2="hi"}. The type int*string is just another way of writing
{1:int, 2:string}. Now, using the tuple syntax is cleaner and better style, but it is still an elegant
language design to have it really just be another language feature (records). That way, the designer and
implementor of the language has less work to do; we can completely define how tuples behave by explaining
how they are really just a different syntax for particular records. This is our first example of the idea
of syntactic sugar, a piece of the language that is just a prettier way of writing something already in the
language. It is syntactic because it is just a different way of writing something, and it is sugar because it
makes the language sweeter.

Let us now return to building compound types in terms of “each of”, “one of”, and “self reference”.
Each-of types are often the simplest for people to understand. They are like records, or Java classes with
only fields. Given types t1, t2, t3, we make some new type t that “has” each of t1, t2, and t3. “One of”
types are just as important; it is very common to have a type t that “has” either t1, t2, or t3. As we will
discuss near the end of the course, in object-oriented languages like Java, one uses subclassing to implement
“one of” types. Finally, self-reference is necessary to describe recursive data structures like lists and trees.

We have actually seen examples of each kind of compound type in earlier lectures. int * bool is an
each-of type; each value of this type has an int and a bool. int option is a one-of type; each value of
this type either has an int or it does not. int list is a compound type using all three notions: a value
of type int list has either no data (the empty list) or it has an int and another int list (notice the
self-reference).

In ML, you use a datatype binding to create a new one-of type that comes with constructors and patterns
for building and accessing values of the new type, respectively. A silly example of such a binding is:

= TwoIlnts of int * int
| Str of string
| Pizza

datatype mytype

This binding creates a new type mytype with 3 variants. A value of type mytype is created in one of 3 ways:
(1) By using the constructor TwoInts on a pair of ints, (2) By using the constructor Str on a string, or (3)
By using the constructor Pizza on nothing. In this sense, constructors are functions (if they take arguments)
or constants (if they do not). In our example, the datatype binding adds to the environment/context: (1)
TwoInts of type int * int -> mytype, (2) Str of type string -> mytype, and (3) Pizza of type mytype.
As with any other function, an argument to a constructor can be any expression of the correct type.

So constructors give us a way to make values of a datatype such as mytype, but we also need a way to use
such values after we make them. Doing so requires two kinds of operations: (1) tests to see which variant



we have and (2) operations that extract the values that a particular variant has. We have already seen such

operations for options and lists. The functions null and isSome are variant tests. The functions valOf, hd,

and tl are the data extractors. Notice they raise exceptions if applied to a value of an unexpected variant.
A datatype binding does not directly create variant tests and data extractors. Instead, ML uses pat-

tern matching, an elegant and convenient feature that combines the variant test and data extraction. By

combining them, the type-checker can check that you do not forget any cases or duplicate any cases.
Pattern-matching is done with a case-expression. The syntax is

case e0 of

pl => el
|
| pn => en
where €0, el, ..., en are expressions and pl, ..., pn are patterns. We have not seen patterns before. They

look a lot like expressions syntactically, but they are more restrictive and their semantics is very different.
Here is a function using pattern matching and our previous datatype example:

fun f2 x = (* f2 has type mytype -> int *)
case x of
Pizza => 3
| TwoInts(il,i2) => il + i2
| Str s => 8

The semantics of a case-expression is to evaluate the expression between the case and of to some value
v and then proceed through the patterns in order, finding the first one that matches. For now, a pattern-
matches if the constructor in it is the same as the constructor for the value v. For example, if the value if
TwoInts(7,9), then the first pattern would not match and the second one would. We evaluate the expression
to the right of the matching pattern (on the other side of the =>) and that result is the result of the whole
case-expression. The other expressions are not evaluated.

We have not yet explained the data-extraction part of pattern-matching. Since TwoInts has two values it
“carries”, a pattern for it can (and, for now, must) use two variables (the (i1,12)). As part of matching, the
corresponding parts of the value v (continuing our example, the 7 and the 9) are bound to i1 and i2 in the
environment used to evaluate the corresponding right-hand side (the 11+i2). In this sense, pattern-matching
is like a let-expression, it binds variables in a local scope.

It turns out case-expressions are a more general and powerful form of conditional expressions. Like
if el then e2 else e3, they use their first expression to decide which other expression is used to produce
the answer. Type-checking is also similar: the different branches must all have the same type and that is
the type of the whole expression. The key additional power is that patterns can bind variables, extending
the context/environment for the corresponding branch.

In fact, conditional expressions are really just syntactic sugar for case-expressions and a predefined
datatype. Among the bindings evaluated before your program starts is:

datatype bool = true | false

We can then treat if el then e2 else e3 as a syntactic shortcut for
case el of true => e2 | false => e3.

As we will see in the next two lectures, pattern-matching can be used for much more than just datatype
values. However, its basic semantics of comparing a pattern against a value and binding variables for the
corresponding branch will not change.

Let us consider two less silly examples of datatype bindings. This first one defines identities as either a
social-security number or (presumably for when someone does not have a number), a first name, optional
middle name, and last name:

datatype id = SSN of int
| Name of string * (string option) * string



Whenever a data definition has a clear “or” in it, datatypes are the way to go. Novice programmers often
abuse “each of” types when they want “one of types”. For example you might see bad code like this (in any
language; we just use ML for the example):

(* If ssn is -1, then the other fields are the name, otherwise ssn is
the identity and the other fields should be ignored *)
type bad_id = {ssn: int, first : string, middle : string option, last : string}

On the other hand, if a name record is supposed to have an optional social-security number and a (non-
optional) name, then an “each of” type is the right thing:

type name_record = {ssn: int option, first : string, middle : string option, last : string}

Our second example is a data definition for arithmetic expressions containing constants, negations, and
additions.

= Constant of int
| Negate of exp
| Add of exp * exp

datatype exp

Thanks to the self-reference, what this data definition really describes is a tree where the leaves are integers
and the internal nodes are either negations with one child or additions with two children. We can write a
function that takes an exp and evaluates it:

fun eval e =
case e of
Constant i => i
| Negate e2 => ~ (eval e2)
| Add(el,e2) => (eval el) + (eval e2)

So this function call evaluates to 15:
eval (Add (Constant 19, Negate (Constant 4)))

Notice how constructors are just functions that we call with other expressions (often other values built from
constructors).
For practice, other functions you could write that process exp values could compute:

e The largest constant in an expression.
e A list of all the constants in an expression (use list append).

e How many addition expressions are in an expression.



