
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 4— Records, Datatypes

Hal Perkins CSE341 Spring 2011, Lecture 4 1

'

&

$

%

Where are we

• Done features: functions, tuples, lists, local bindings, options

• Done concepts: syntax vs. semantics, environments, mutation-free

• Today features: records, datatypes, case expressions

(pattern-matching)

• Today concepts: “One-of” types, constructors/extractors,

case-coverage

Hal Perkins CSE341 Spring 2011, Lecture 4 2

'

&

$

%

Base types and compound types

Languages typically provide a small number of “built-in” types and

ways to build compound types out of simpler ones:

• Base types examples: int, string, unit

• Type builder examples: tuples, lists, records (see code)

Base types clutter a language definition; better to make them libraries

when possible.

• ML does this to a remarkable extent (e.g., we will soon define

away bool and conditionals)

Hal Perkins CSE341 Spring 2011, Lecture 4 3

'

&

$

%

Compound-type flavors

Conceptually, just a few ways to build compound types:

1. “Each-of”: A t contains a t1 and a t2

2. “One-of”: A t contains a t1 or a t2

3. “Self-reference”: The definition of t may refer to t

Examples:

• int * bool (syntactic sugar for a record type in ML)

• int option

• int list

Remarkable: A lot of data can be described this way.

(optional jargon: product types, sum types, recursive types)

Hal Perkins CSE341 Spring 2011, Lecture 4 4

'

&

$

%

Record types and tuples

ML records are a collection of named fields (“each of”). Example:

val person = { name = "me", id = 1234 };

Its type is { id: int, name: string }. (The order of fields doesn’t

matter and, in fact, SML/NJ alphabetizes them when displaying a

record type or value.)

Field names act as selectors (although we will normally use pattern

matching instead).

#name person;

val it = "me": string;

A tuple is just a record with field names 1, 2, 3, . . . and selectors #1,

#2, #3, These are equivalent:

("hello", 17, true)

{ 1 = "hello", 2 = 17, 3 = true }

Hal Perkins CSE341 Spring 2011, Lecture 4 5

'

&

$

%

User-defined types

There are many reasons to define your own types:

1. Using a tuple with 12 fields is incomprehensible

2. Writing down large types is unpleasant; we have computers for

that

3. Large programs can use abstract types to be robust to change

• A couple weeks ahead

4. So the language doesn’t have to “bake in” lists and options and

. . .

Hal Perkins CSE341 Spring 2011, Lecture 4 6

'

&

$

%

Datatype

One-of types are less similar across languages

• We’ll discuss OO’s approach to one-of in a few weeks

In ML, we make a new type with a datatype binding, e.g.:

datatype mytype = TwoInts of int*int

| Str of string

| Pizza

Semantics: Extend the environment with three constructors (in part,

functions/constants that produce values of type mytype)

• TwoInts has type int*int->mytype

• Str has type string->mytype

• Pizza has type mytype.

So we have a way to build them... what’s missing?

Hal Perkins CSE341 Spring 2011, Lecture 4 7

'

&

$

%

The old way

For lists and options, we had a way to:

• Test which variant a value was (e.g., null)

• Extract the values from value-carrying variants (e.g., hd, tl)

– Makes no sense if you have the wrong variant

What would this look like for mytype?

Hal Perkins CSE341 Spring 2011, Lecture 4 8

'

&

$

%

The new way

Rather than add variant-tests and data-extractors (non-standard

jargon), ML has a case expression that uses pattern-matching.

In its simplest form, case has one pattern for each constructor in a

dataype and binds one variable for each value carried. Example:

case e of

TwoInts(i1,i2) => e1

| Str s => e2

| Pizza => e3

What are the typing rules?

What are the evaluation rules?

Patterns are not types nor expressions (despite syntactic similarity)

Hal Perkins CSE341 Spring 2011, Lecture 4 9

'

&

$

%

Type-checking case

In addition to binding local variables and requiring branches to have

the same type, the typing rules for case prevent some run-time errors:

• Exhaustiveness: No test can “fail” (a warning)

• Redundancy: No test can be “impossible” (an error)

Hal Perkins CSE341 Spring 2011, Lecture 4 10

'

&

$

%

Expression trees

datatype arith_exp = Constant of int

| Negate of arith_exp

| Add of arith_exp * arith_exp

Think of values of type arith_exp as trees where nodes are

• Constant with one int child

• Negate with one child that can be any arith_exp tree.

• Add with two children that can be any arith_exp trees.

In general, a type describes a set of values, which are often trees.

One-of types give you different variants for nodes.

Constructors evaluate arguments to values (trees) and create bigger

values (i.e., taller trees).

Hal Perkins CSE341 Spring 2011, Lecture 4 11

'

&

$

%

Where we’re going

So far, case gives us what we need to use datatypes:

• A (combined) way to test variants and extract values

• Powerful enough to define our own tests and data-extractors

In fact, pattern-matching is far more general and elegant:

• Can use it for datatypes already in the top-level environment

(e.g., lists and options)

• Can use it for any type (Wednesday; also tail recursion)

• Can have deep patterns (Friday; also course motivation)

Hal Perkins CSE341 Spring 2011, Lecture 4 12

