CSE 341, Spring 2008, Lecture 3 Summary

Standard Disclaimer: These comments may prove useful, but certainly are mnot a complete summary of all
the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

Recall that we can now write recursive functions, which is particularly useful / necessary for using lists
since the size of a list is not bounded. However, we do not yet have a way to create local variables, which are
essential for at least two reasons — writing code in good style and writing code that uses efficient algorithms.
Today’s topic is ML’s let-expressions, which is how we create local variables. Let-expressions are both simpler
and more powerful than local variables in many other languages: they can appear anywhere and can have
any kind of binding.

Syntactically, a let-expression is:

let bl b2 ... bn in e end

where each bi is a binding (so far we have seen variable bindings and function bindings) and e is an expression.

The type-checking and semantics of a let-expression is much like the semantics of the top-level bindings in
our ML program. We evaluate each binding in turn, creating a larger context/environment for the subsequent
bindings. So we can use all the earlier bindings for the later ones, and we can use them all for e. We call the
scope of a binding “where it can be used”, so the scope of a binding in a let-expression is the later bindings
in that let-expression and the “body” of the let-expressions (the e). The value e evaluates to is the value
for the entire let-expression.

For example, this expression evaluates to 7; notice how one inner binding for x shadows an outer one.

let val x = 1
in (let val x = 2 in x+1 end) + (let val y = x+2 in y+1 end)
end

Also notice how let-expressions are expressions so they can appear as a subexpression in an addition (though
this example is silly and bad style because it is hard to read).

Let-expressions can bind functions too, since functions are just another kind of binding. If a helper
function is only needed by one other function and is unlikely to be useful elsewhere, it’s good style just to
bind it locally. For example, here we use a local helper function to help produce the list [1,2,...,x]:

fun countup_froml (x:int) =
let fun count (from:int, to:int) =
if from=to

then [to]
else from :: count(from+1,to)
in
count (1,x)
end

However, we can do better. When we evaluate a call to count, we will evaluate count’s body in an
environment that is the environment where count was defined, extended with bindings for count’s arguments.
The code above doesn’t really exploit this: count’s body only uses from, to, and count (for recursion). It
could also use x, since that is in the environment when count is defined. Then we do not need to at all,
since in the code above it always has the same value as x. So this is better style:

fun countup_froml_better (x:int) =
let fun count (from:int) =
if from=x

then [x]
else from :: count(from+1)
in
count (1)
end



This technique — define a local function that uses other variables in scope — is a hugely common and
convenient thing to do in functional programming. It is a shame that most non-functional languages have
little or no support for doing something like it.

Local variables are often good style for keeping code readable. They can be much more important than
that when they bind to the results of potentially expensive computations. For example, consider this code
that does not use let-expressions:

fun bad_max (1st : int list) =
if null 1st
then O
else if null (t1(lst))
then hd(lst)
else if hd(1st) > bad_max(tl(lst))
then hd(1lst)
else bad_max(tl(lst))

If you call bad_max with countup_from1(30), it will make approximately 230 (over one billion) recursive
calls to itself. The reason is an “exponential blowup” — the code calls bad_max(t1(1st)) twice and each
of those calls call bad_max two more times (so four total) and so on. This sort of programming “error” can
be difficult to detect because it can depend on your test data (if the list counts down, the algorithm makes
only 30 recursive calls instead of 220).

We can use let-expressions to avoid repeated computations. This version computes the max of the tail
of the list once and stores the resulting value in t1_ans.

fun good_max (1st : int list) =

if null 1st

then 0O

else if null (t1(1lst))

then hd(1lst)

else
(* for style, could also use a let-binding for hd(lst) *)
let val tl_ans = good_max(tl(1lst))

in
if hd(1st) > tl_ans
then hd(1lst)
else tl_ans

end

This example does not properly handle the empty list — it returns 0. This is bad style because 0 is really
not the maximum value of 0 numbers. There is no good answer. So to properly deal with that fact, it would
be better to change the return type to either return the maximum number or indicate the input list was
empty so there is no maximum. Given the constructs we have, we could “code this up” by returning a list
of integers, using the empty list if the input was the empty list and a list with one integer (the maximum)
if the input list was not empty.

While that works, lists are “overkill” — we will always return a list with 0 or 1 elements. So a list is
not really a precise description of what we are returning. The ML library has “options” which are a precise
description: an option value has either 0 or 1 thing: NONE is an option value “carrying nothing” whereas
SOME e evaluates e to a value v and becomes the option carrying the one value v.

Given a value, how do you use it? Just like we have null to see if a list is empty, we have isSome
which evaluates to false if its argument is NONE. Just like we have hd and t1 to get parts of lists (raising
an exception for the empty list), we have val0f to get the value carried by SOME (raising an exception for
NONE).

Using options, here is a better version with return type int option:



fun better_max (Ilst : int list) =
if null 1st
then NONE
else
let val tl_ans = better_max(tl(lst))
in if isSome tl_ans andalso valOf tl_ans > hd(lst)
then tl_ans
else SOME (hd(1st))
end



