
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 3— Lack of Mutation, let bindings, options

Hal Perkins CSE341 Spring 2011, Lecture 3 1



'

&

$

%

List Review

• Build lists: [], ::, and shorthand [e1,e2,...,en]

• Use lists: null, hd, tl

• Types: Each list has elements of the same type. Examples:

int list

(int*int) list

((int*int) list) list

• So what are the typing rules for [], ::, null, hd, and tl?

• Functions that build or use lists are usually recursive

– And/or use other recursive functions

– Elegant algorithms by “thinking high-level” (e.g., append)

Hal Perkins CSE341 Spring 2011, Lecture 3 2



'

&

$

%

Sharing

Recall append([2,4],[5,3,0]) evaluates to [2,4,5,3,0].

Similarly, tl [9,7,4,2] evaluates to [7,4,2].

Do the results share, i.e., alias the arguments?

Example: val x=[2,4]; val y=[5,3,0]; val z=append(x,y)

Hal Perkins CSE341 Spring 2011, Lecture 3 3



'

&

$

%

Sharing, good or bad?

Java programmer’s view:

• A never-ending obsession with what is shared. This obsession is

necessary because everything is mutable.

• Sharing is wrong if you don’t want a mutation of “one list” to

“affect the other” and right if you do.

• So sometimes make copies just to avoid sharing in case some

other code might do a mutation.

Hal Perkins CSE341 Spring 2011, Lecture 3 4



'

&

$

%

Sharing, good or bad?

ML programmer’s view:

• It is actually impossible to tell if there is sharing or not!

• So stop worrying and just write append; all lists [2,4,5,3,0]

behave the same no matter what they do or do not share with.

• Amount of sharing is just a “space optimization”

– Usually good to share.

– tl shares, which makes it very fast (O(1)).

Hal Perkins CSE341 Spring 2011, Lecture 3 5



'

&

$

%

Let bindings

Motivation: Functions without local variables can be poor style and/or

really inefficient.

Syntax: let b1 b2 ... bn in e end where each bi is a binding.

Typing rules: Type-check each bi and e in context including previous

bindings. Type of whole expression is type of e.

Evaluation rules: Evaluate each bi and e in environment including

previous bindings. Value of whole expression is result of evaluating e.

Elegant design worth repeating:

• Let-expressions can appear anywhere an expression can.

• Let-expressions can have any kind of binding.

– Local functions can refer to any bindings in scope.

– Better style than passing around unchanging arguments.

Hal Perkins CSE341 Spring 2011, Lecture 3 6



'

&

$

%

More than style

Exercise: hand-evaluate bad_max and good_max for lists, [3,2,1],

[1,2], and [1,2,3].

Moral: Repeating expensive (recursive) computations is not just bad

style; it is the wrong algorithm performance-wise.

Hal Perkins CSE341 Spring 2011, Lecture 3 7



'

&

$

%

Options

“Options are like lists that can have at most one element.”

• Create a t option with NONE or SOME e where e has type t.

• Use a t option with isSome and valOf

Why not just use lists? An interesting style trade-off:

• Options better express purpose, enforce invariants on callers,

maybe faster.

• But cannot use functions for lists already written.

Hal Perkins CSE341 Spring 2011, Lecture 3 8



'

&

$

%

Summary and general pattern

Major progress: recursive functions, pairs, lists, let-expressions, options

Each has a syntax, typing rules, evaluation rules.

Functions, pairs, lists, and options are very different, but we can

describe them in the same way:

• How do you create values?

– function definition; pair expressions; [] and ::; NONE and SOME

• How do you use values?

– function application; #1 and #2; null, hd, and tl; isSome

and valOf

Soon: much better ways to use pairs and lists (pattern-matching)

Hal Perkins CSE341 Spring 2011, Lecture 3 9


