
CSE 341, Spring 2011, Lecture 23 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of all
the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

This lecture considers developing a static type system for an object-oriented language. We won’t consider
any specific type system for any specific language. Rather, we will consider the general principles and
“theory” that would go into developing such a type system. Next lecture we will “connect” this discussion
to classes (as in Java) and how it compares to an ML-style type system. The main points of this lecture are:

• An object’s type should indicate what methods can be called on it so that there are no message-not-
understood errors.

• To avoid being overly restrictive, subtyping — allowing all expressions of one type to also have another
type — is extremely useful.

• Width and permutation subtyping are sound.

• Depth subtyping is unsound if fields are mutable.

• Subtyping on methods (or functions) allows contravariant arguments and covariant results. (These
terms are defined below.)

Recall the purpose of a type system is to prevent certain errors for all programs, rejecting some programs
before they run. In ML, the errors we prevented included treating a string as a function or accessing functions
made private by a signature. For pure object-oriented languages, “all we do” is create objects and send them
messages (i.e., call methods), so what might we want to prevent?

1. We want to prevent sending a message to an object that cannot understand the message (i.e., has no
method of the right name). This is a message-not-understood error.

2. If our language allows methods with multiple arguments, we want to prevent calling a method with
the wrong number of arguments.

Because there isn’t much else our program does, there isn’t much else to prevent. We should also prevent
accessing non-existent fields, but if we imagine field accesses as using getter/setter methods, then the first
item above covers this case.

(Though we won’t have time to discuss it, static overloading and/or multimethods raise additional errors
we may wish to prevent. With these features, languages can have multiple methods with the same name
that are actually different methods and we have to decide at each call-site which method is the “best match”
for the arguments. If there are situations where there is “no best match”, that is an error. Java is an
example of a language with static overloading where the type system rejects programs that have calls with
no-best-match.)

Recall a type system is sound if, by definition, it never accepts a program that could have one of the
errors the type system is supposed to prevent. Our goal is to identify the key features a sound type system for
objects needs. However, preventing message-not-understood often turns out to be a bit too strong in practice,
so many languages make the choice not to catch errors resulting from some “special thing” like Java’s null
or Ruby’s nil. These are not quite the same: Ruby’s nil is an object that just happens to respond to very
few messages. null is not an object, it responds to no messages and evaluating e.m(e1,...,en) where e

evaluates to null throws (as you have no doubt seen) a NullPointerException. In either case, though, the
type of nil or null should be something that accepts very few messages, but for convenience the type system
treats as something that can have any type, meaning it can accept any message. Since this is not actually
true, for our type system to be sound we have to change our definition of what it intends to prevent: We
want to prevent a message-not-understood error unless the receiver is null/nil (in which case a run-time
error is allowed).
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Before considering objects with arbitrary methods, let’s just consider objects that are like ML records.
They have fields and for every field we assume there is a getter method and a setter method. We will also
assume our language has integers, though we could get by without it. So given an expression like e.x or like
e.x = 17, we need that e type-checks and has a field named x. That way the expressions above will not
have message-not-understood (or perhaps “field-not-understood”) errors.

However, it is not enough to let an object’s type just list the fields of the object. Consider obj.x.y. If
all we know about obj is that it has fields x, f, and a, then we know obj.x is okay, but we do not know if
the resulting object has a y field. Therefore, like ML record types, we need object types to list fields and
the types of the fields. So the definition of types is recursive, as we might expect. Since we are not talking
about any specific programming language, we need to make up some syntax for writing down types. We
won’t use class names since that is largely a separate issues. Instead we’ll just write down types “directly”.
For example, an object with two fields x and y that both hold numbers could have type:

{ x : int, y : int }

We can also let ourselves give names to types, which is convenient and necessary for describing lists or trees.
Here are some examples:

intList = { hd : int, tl : intList }

string = { hd : char, tl : string }

name = { first : string, last : string }

In the last example, we describe objects with first and last fields, both of which hold objects that
themselves have hd and tl fields. We can also write types just like this:

{ a : {}, b : { c : int } }

This type describes objects with fields a and b where the contents of the a field is an object with no fields
and the contents of the b field is an object with a c field whose contents is a number.

These types are sufficient for defining a sound type system as you might expect. For example, we could
allow a variable declaration such as:

{ a : {}, b : { c : int } } o1 = [ a => [], b => [ c => 17 ]]

where here we are making up syntax for creating objects. We are just writing the name of a field and then
an => and then the field’s contents, which can be another object. The syntax does not really matter. We
could then allow setting a field with another object of the appropriate type:

{ c : int } o3 = [ c => 42 ]

o1.b = o3

However, requiring the right-hand side of an assignment to have a type exactly equal to the type of the
assigned-to location is unnecessarily restrictive. Consider:

{ c : int, d : int } o4 = [ c => 42, d => 43 ]

o1.b = o4

If we require equal types, we reject this program because o1.b has type { c : int } and o4 has type
{ c : int, d : int }. However, this assignment is okay: it cannot lead to a message-not-understood
error. The object we put in o1.b has everything the type of o1.b requires, namely a c field holding an int.
If we could somehow enrich our type system so that expressions of type { c : int, d : int } could also
have type { c : int }, then o4 could have type { c : int } and the assignment would type-check.

Subtyping is exactly the type-system feature that lets us say, “anything that has some type t1 can also
have type t2.” We call t1 the subtype. We call t2 the supertype. And we call the rule that lets us give an
expression of type t some other type that is a supertype of t subsumption.
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We have to choose our rules for what is allowed to be a subtype of what carefully so that subsumption
does not break the soundness of our type system. Therefore, subtyping is not a matter of opinion. We can
only let t1<:t2 (a short way of writing t1 is a subtype of t2) if any value of type t1 could be viewed as a
value of type t2.

Our example above used “width subtyping,” which recognizes that an object with more fields is a subtype
of an object with fewer fields. (This may sound backwards, but the way to make it sound forwards is to say
that there are fewer objects with a c field and a d field than there are objects with a c field. In fact, there
is a subset relationship.) In general, for any field names x1, ..., xn, y, and types t1, ..., tn, t we have:

{x1:t1 ... xn:tn y:t} <: {x1:t1 ... xn:tn}

This rule would only let us “forget” one field, but subtyping is also always transitive: If t1<:t2 and t2<:t3

then t1<:t3. Subtyping is also reflexive: every type is a subtype of itself.
Finally, the rule above suggests we can only forget the “last field,” but we can also have permuta-

tion subtyping, which just says that the order we write down fields in a type need not matter. So if we
have some method taking an argument of type { c : int, d : int} and we have an expression of type
{ d : int, c : int}, permutation subtyping would let us pass the expression in the method call.

Now consider subtyping inside another object type. This is called depth subtyping. It is tempting to
allow this rule:

If ti <: t

then {x1:t1 ... xi:ti ... xn:tn} <: {x1:t1 ... xi:t ... xn:tn}

This would be useful if, for example, some method expected an argument of type {a : { c : int } and
we had an argument of type {a : { c : int, d : int} }. Unfortunately, this rule is not sound! It would
be sound if we knew the body of the method would only get the a field of its argument and not set it. Here
is an example showing the problem:

t1 = {x:{} y:{z:{}}}

t2 = {x:{} y:{}}

line 1: t1 o1 = [x=>[], y=>[z=>[]]]

line 2: t2 o2 = o1 # use _broken_ notion of subsumption

line 3: o2.y = []

line 4: o1.y.z # message not understood!

Line 1 initializes o1 with an object of the correct type for t1. Line 2 uses depth subtyping to assign o1

to an object of type t2. Notice t2<:t1 only if we allow our depth subtyping rule. Also notice o1 and o2

are now aliases; they refer to the same object. Line 3 type-checks because [] and o2.y both have type {}.
Line 4 type-checks because o1.y has type {z:{}}. However, running the program produces a message-not-
understood error because line 3 mutated the y field of the object o1 (and o2) point to to hold [], which has
no z field.

There are two simple solutions that restore soundness:

1. Get rid of depth subtyping.

2. Get rid of mutation on fields.

So again, banning mutation has a benefit; it allows more subtyping. However, most OO languages do allow
fields to be updated, so the more common solution is the first one. That means that if a subtype and a
supertype both have the same field, then that field must have the same type in both.

Now let’s consider subtyping in the presence of objects with methods. Arbitrary methods are more general
than just fields, which we can think of as two methods (a getter and a setter). Methods take arguments and
return results. We’ll assume an object has any number of methods that are immutable. So the question is
when can we allow:

{... t0 m(t1,...,tn) ...} <: {... t0’ m(t1’,...,tn’) ...}
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In other words, if the subtype and supertype both have some method m how must the argument and return
types for m compare to each other between the subtype and the supertype. One sound answer would be to
require them to be the same (so t0’=t0, t1’=t1, ... tn’=tn), but that is unnecessarily restrictive.

First consider the return types t0 and t0’. We can allow t0<:t0’. For example, suppose t0={c:int, d:int}

and t0’={d:int}. Then if we have an object of type {t0 m()} (i.e., an object with one method m returning
a t0), we subsume this to {t0’ m()} and then we call m, the type-checker will ensure we assume the result
has type {d:int}. It actually has type {c:int, d:int}, but it is sound to assume less about the result.

Now consider the less intuitive issue of argument types. Can we allow subtyping like we did for argument
types? NO!!! Consider this example:

{ int m({}) } o1 = ...

{ int m({x : int}) } o2 = ...

o1 = o2

o1.m([]) # calls a method that might do use argument’s x field in its body!

If o2 has a method expecting an argument of type {x:int}, it is unsound to call that method with [],
but that would be allowed if we could subsume { int m({x:int}) } to { int m({}) }. In general, for
{... t0 m(t1,...,tn) ...} <: {... t0’ m(t1’,...,tn’) ...} we cannot allow some argument (e.g.,
t1) be a subtype of the supertype’s argument (e.g., t1’). However, it is sound to allow some argument (e.g.,
t1) to be a supertype of the supertype’s argument (e.g., t1’). Consider this similar but crucially opposite
example:

{ int m({}) } o1 = ...

{ int m({x : int}) } o2 = ...

o2 = o1

o2.m([x=7]) #fine! actual argument has x field that won’t be used

The type of o2 says m must be called with an argument that has an x field. In fact, o2 refers to an object of
type {int m({})} so m is in fact not going to acces the x field. Still, there is no harm in passing an object
that does have an x field. In general, a supertype can require more of method arguments than the subtype.

Notice the beautiful if unintuitive symmetry: The type of a method in the supertype requires more of
its arguments and promises less about its result. That makes sense: the subtype, which is closer to what
an object of with the subtype “actually has” can always be conservatively treated as the supertype. After
subsumption, only fewer calls to the method will work (it will be harder for arguments to type-check and
there is less we can do with the result), so the subsumption cannot lead to a message-not-understood error.

While we have considered method subtyping for object-oriented languages, a functional language with
subtyping would work the same way. (ML does not have subtyping, but that’s because it complicates type
inference.) When can we allow t1->t2 <: t3->t4? The answer is when t2 <: t4 and t3 <: t1. Again,
this means the supertype requires more of its argument and assumes less about its result.

There is some jargon for this. We say argument types are contravariant, which means the subtype
relationship for the arguments is the opposite of what it is for the overall type. We say result types are
covariant, which means the subtype relationship for the results is the same as what it is for the overall type.

Argument contravariance is the least intuitive concept in the course, but it is worth burning into your
memory so that you do not forget it. Many people get confused because it is not about calls to meth-
ods/functions. Rather it is about the methods/functions themselves. If I have a function of type t1->t2

I can call it with a subtype of t1. For example if t3<:t1 and e1 has type t1->t2 and e2 has type t3,
then e1(e2) type-checks by subsuming t3 to t1. The call is fine because the function e1 that evaluates
to gets an argument with “more than what it needs.” Contravariant subtyping is about subsuming some
function itself to a different function type. For example, we can subsume t1->t2 to t3->t2, i.e., t3->t2 is
a supertype of t1->t2 because t3 is a subtype of t2. This is a “different way” we could use subsumption
to type-check e1(e2). For type-checking a call, either subsumption is fine, and certainly subsuming the
argument is simpler to think about. But if we are going to have one object be a subtype of another or store
a function in a record or pass a function to another function, etc., we may need function subtyping for this
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to type-check since are not “yet” actually calling the function. For example, we need function subtyping and
contravariant arguments for this code:

t1->t2 x = ...

t3->t2 y = x

... maybe later x or y gets called ...
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