
CSE 341, Spring 2011, Lecture 21 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of all
the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

The purpose of this lecture is to consider the semantics of object-oriented language constructs, particularly
method calls, as carefully as we have considered the semantics of functional language constructs. As we will
see, the key distinguishing feature is how self (Java’s this) is bound to the environment when a method is
called. We will also see how to encode this concept as a programming idiom in Scheme, even though Scheme
does not have object-oriented semantics.

Before discussing self in particular, let’s consider more generally the semantics of resolving (i.e., “looking
up”) various things like fields, variables, method names, etc. Such “name resolution” is a key part of
a language’s semantics. For example, the lexical scope of ML and Scheme is essential to understanding
functional programming.

In Ruby, unlike Java, deciding whether some name like f refers to a field or a local variable is trivial
because fields always start with a @ and variables never do. (Relatedly, class fields always start with @@.)
There is a general principle here: rules about shadowing and name collisions are trivially avoided when there
is a syntactic distinction, as there is here between fields and variables. In Java, we need a separate rule
that local variables shadow fields, though that is certainly not a big deal. Interestingly, Ruby’s choice to let
you omit () when calling a zero-argument method creates a different potential collision: Is m+2 adding 2 to
the local variable m or is it adding 2 to the result of calling self.m()? It turns out local variables shadow
methods, but since variables aren’t declared, the actual answer depends on whether the method has already
assigned to a variable m or not. This is a Ruby detail that comes up rarely, but it does point out the subtle
“gotchas” that can arise when your syntax is ambiguous.

To continue defining Ruby’s lookup rules, inside a block we look up the variable from the environment
where the block was defined. Nested blocks can shadow variables from outer blocks, and if a variable is not
defined in the block (or an outer block), it can also be defined in the enclosing method. In other words, blocks
are like closures in how variables are looked up, and the implementation of Ruby needs to build closures like
you did when implementing your interpreter for a functional language.

However, Ruby blocks are not quite as directly useful as ML/Scheme closures because they are not first-
class. A language construct is first-class if, by definition, it can be the result of an arbitrary computation,
passed as an argument to a function, stored in another data structure (e.g., an object field), etc. Things
that are values are first-class. In Ruby, the values are objects. Here are some things that are not first-class:

• Method names: You cannot write something like x.(if b then m else n end) which is trying to
return the name of a method from an if-expression. Method names are not first-class; this is not a
Ruby program. You have to write something like if b then x.m else x.n end.

• Argument lists: Suppose you have f(1,2,3) + g(1,2,3). You cannot rewrite that as
x = (1,2,3); f x + g x.

• Blocks: You cannot, for example, store a block in a field of an object. That is exactly why the class
Proc exists. Objects are first-class, and of course instances of Proc are objects.

The notion of what is first-class is important in any programming language.
The remaining thing to define for Ruby is how method calls are resolved. That is, given a call, how

do we determine which code is executed for the call. Note that in OO, we also sometimes refer to method
calls as “message sends”, which fits well with the notion of objects. Given obj.m 2, we can talk about
“calling obj’s m method with argument 2” or “sending obj the message m with argument 2.” These are
synonymous phrases. In class-based object-oriented languages like Ruby and Java, the rule for evaluating
e0.m(e1,...,en) is:

• Evaluate e0, e1, ..., en to values, i.e., objects obj0, obj1, ..., objn.
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• Get the class of obj0. Every object “knows its class” at run-time. Think of the class as a special field
of obj0.

• Suppose obj0 has class A. If m is defined in A, call that method. Otherwise recur with the superclass of
A to see if it defines m. Raise a “message not understood” error if neither A nor any of its superclasses
defines m (with the right number of arguments).

• (Ruby’s mixins complicate the lookup rules a bit more. See the next lecture.)

Now that we have defined what method to call, we still have to define what environment to use when
evaluating its body. If the method has formal arguments (i.e., argument names or parameters) x1, x2, . . . ,
xn, then the environment for evaluating the body will map x1 to obj1, x2 to obj2, etc. But there is
one more thing that is the essence of object-oriented programming and has no real analogue in functional
programming: We always have self in the environment. While evaluating the method body, self is
bound to obj0, the object that is the “receiver” of the message.

This last phrase is what is meant by the synonyms “late-binding,” “dynamic dispatch”, and “virtual
function calls”. It is central to Java and Ruby’s semantics. It means that when the body of m calls a
method on self (e.g., self.someMethod(34) or just someMethod(34)), we use the class of obj0 to resolve
someMethod, not (necessarily) the class where someMethod is defined.

This semantics is:

• Exactly why our example from last lecture “worked” when we defined a PolarPoint class and did not
have to override distFromOrigin. The distFromOrigin in the superclass made calls to self.x and
self.y, so when self was bound to a PolarPoint, we used the definitions of x and y in PolarPoint.

• “Old news” to you because you learned it in your introductory Java courses. Now we can just give it
a more precise definition because we understand that it is really about what self is bound to in the
environment.

• Quite a bit more complicated than ML/Scheme function calls. It may not seem that way to you because
you learned it first. But it took many weeks in your introductory course before it could be explained.

To understand how dynamic dispatch differs from function calls, consider this simple ML code that defines
two mutually recursive functions:

fun even x = if x=0 then true else odd (x-1)

and odd x = if x=0 then false else even (x-1)

This creates two closures that both have the other closure in their environment. If we later shadow the even

closure with something else, e.g.,

fun even x = false

that will not change how odd behaves. When odd looks up env in the environment where odd was defined,
it will get the first line above. That is “good” for understanding how odd works just from looking at where
odd is defined. On the other hand, suppose we wrote a better version of even like:

fun even x = (x mod 2) = 0

Now our odd is not “benefitting from” this optimized implementation.
In OO programming, we can use (abuse?) subclassing, overriding, and dynamic dispatch to change the

behavior of odd by overrding even:

class A

def even x

if x=0 then true else odd(x-1) end

end
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def odd x

if x=0 then false else even(x-1) end

end

end

class B < A

def even x # changes B’s odd too!

x % 2 = 0

end

end

Now (B.new.odd 17) will execute faster because odd’s call to even will resove to the method in B – all
because of what self is bound to in the environment. While this is certainly convenient in the short
example above, it has real drawbacks. We cannot look at one class (A) and know how calls to the code
there will behave. In a subclass, what if someone overrode even and did not know that it would change the
behavior of odd? Basically, any calls to methods that might be overridden need to be thought about very
carefully. It is likely often better to have private methods that cannot be overridden to avoid problems. Yet
overriding and dynamic dispatch is the biggest thing that distinguishes object-oriented programming from
functional programming.

Let’s now consider coding up objects and dynamic dispatch in Scheme. This serves two purposes:

• It demonstrates that one language’s semantics (how the primitives like message send work in the
language) can typically be coded up as an idiom (simulating the same behavior via some helper
functions) in another language.

• It gives a lower-level way to understand how dynamic dispatch “works” by seeing how we would do it
manually in another language.

Our approach will be different from what Ruby (or Java) actually does in these ways:

• Our objects will just contain a list of fields and a list of methods. This is not “class-based”, in which
an object would have a list of fields and a class-name and then the class would have the list of methods.

• Real implementations are more efficient. They use better data structures (based on arrays) for the
fields and objects rather than simple association lists.

Nonetheless, the key ideas behind how you implement dynamic dispatch still come through. By the way,
we are wise to do this in Scheme rather than ML, where the types would get in our way. In ML, we would
likely end up using “one big datatype” to give all objects and all their fields the same type, which is basically
awkwardly programming in a Scheme-like way in ML. (On the other hand, typed OO languages are often
no friendlier to ML-style programming.)

Our objects will just have fields and methods:

(define-struct obj (fields methods)) ; a cons cell would also work

We will have fields hold an association list (a list of pairs), where elements are a symbol (the field name)
and a value (the current field contents). With that, we can define helper functions get and set that given
an object and a field-name, return or mutate the field appropriately. Notice these are just plain Scheme
functions, with no special features or language additions, except that to get things to work in Racket, we
need to use Racket’s mutable lists for mutable fields:

(require racket/mpair)
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(define (get obj fld)

(let ([pr (massoc fld (obj-fields obj))])

(if pr

(mcdr pr)

(error "field not found"))))

(define (set obj fld v)

(let ([pr (massoc fld (obj-fields obj))])

(if pr

(set-mcdr! pr v)

(error "field not found"))))

More interesting is calling a method. The methods field will also be an association list, mapping method
names to functions. The key to getting dynamic dispatch to work is that these functions will all take an extra
explicit argument that is implicit in languages with built-in support for dynamic dispatch. This argument
will be “self” and our Scheme helper function for sending a message will simply pass in the correct object:

(define (send obj msg . args)

(let ([pr (assoc msg (obj-methods obj))])

(if pr

((cdr pr) obj args) ; do the call

(error "method not found" msg))))

Notice how the function we use for the method gets passed the “whole” object obj, which will be used for
any sends to the object bound to self.

Now we can define make-point, which is just a Scheme function that produces a point object. That’s
what constructors do; they take arguments and return new objects:

(define make-point

(lambda (_x _y)

(make-obj

(mlist (mcons ’x _x)

(mcons ’y _y))

(list (cons ’get-x (lambda (self lst) (get self ’x)))

(cons ’get-y (lambda (self lst) (get self ’y)))

(cons ’set-x (lambda (self lst) (set self ’x (car lst))))

(cons ’set-y (lambda (self lst) (set self ’y (car lst))))

(cons ’distToOrigin

(lambda (self lst)

(let ([a (send self ’get-x)]

[b (send self ’get-y)])

(sqrt (+ (* a a) (* b b))))))))))

Notice how each of the methods takes a first argument, which we just happen to call self. We then use
self as an argument to get, set, and send. Of course, if we had some other object we wanted to send a
message or access a field of, we would just pass that object to our helper functions.

Finally, we can define a “subclass” of polar points (defined at the end since it gets a bit long). We can
append new fields and new/overriding methods to the front of the lists made by creating a point. (This relies
on the fact that assoc returns the first matching pair in the list.) So our “constructor” uses the make-point

constructor (just like Java constructors always call super()).
Most importantly, the procedure paired with ’distToOrigin still works for a polar point because

the method calls in its body will use the procedures listed with ’get-x and ’get-y in the definition of
make-polar-point.
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(define make-polar-point

(lambda (_r _th)

(let ([pt (make-point #f #f)])

(make-obj

(mappend (mlist (mcons ’r _r)

(mcons ’theta _th))

(obj-fields pt)) ; Java-style field extension

(append

(list

(cons ’set-r-theta

(lambda (self lst)

(begin

(set self ’r (car lst))

(set self ’theta (car (cdr lst))))))

(cons ’get-x (lambda (self lst)

(let ([r (get self ’r)]

[theta (get self ’theta)])

(* r (cos theta)))))

(cons ’get-y (lambda (self lst)

(let ([r (get self ’r)]

[theta (get self ’theta)])

(* r (sin theta)))))

(cons ’set-x (lambda (self lst)

(let* ([a (car lst)]

[b (send self ’get-y)]

[theta (atan (/ b a))]

[r (sqrt (+ (* a a) (* b b)))])

(send self ’set-r-theta r theta))))

(cons ’set-y (lambda (self lst)

(let* ([b (car lst)]

[a (send self ’get-x)]

[theta (atan (/ b a))]

[r (sqrt (+ (* a a) (* b b)))])

(send self ’set-r-theta r theta)))))

(obj-methods pt))))))

We can create an “object” and send it some messages like this:

(define p1 (make-polar-point 4 3.1415926535))

(send p1 ’set-y 4)

(send p1 ’get-y)

(send p1 ’distToOrigin)
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