
CSE 341, Spring 2011, Lecture 20 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of all
the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

This lecture covers three topics, the last of which is essential to OO programming and will be considered
more generally next time:

1. “Duck typing” — a sort of conceptual approach to dynamically typed OO programming)

2. Blocks, Procs, and iterators — Ruby’s convenient, pervasive but somewhat idiosyncratic use of function
closures

3. Subclassing, inheritance, and dynamic dispatch — the most essential aspect of OO programming

Duck Typing

In dynamically typed OO languages, one often implicitly assumes some object is an instance of a particular
class. But no type system prevents an instance of a different class, and if the other class “behaves enough
like” the expected class, the code you are writing may still work. For example, if we write a method like

def double x

x + x

end

we may have “thought” the method expects an Integer, but it works for any class with a + method that
can be passed self as its argument.

On the one hand, this flexibility can allow more code reuse and can allow callers to use “similar” objects
of unexpected classes. You can write very flexible code by not explicitly testing whether an object is an
instance of a certain class. Instead, you call just the methods you need. On the other hand, this means far
fewer code changes produce equivalent code. For example, for integers, x+x and x*2 are equivalent, but this
may not be true in general.

This idea — that the “type” of a variable is based entirely on the methods used on that variable — is
sometimes called “duck typing.” This refers to the expression, “If it walks like a duck and quacks like a
duck, it’s a duck.” One can make a philsophical argument: If all you know about ducks is that they walk
and quack and you have something that walks and quacks, you cannot tell it is not a duck, so is there any
harm in supposing that it is one?

Ruby’s Closures

While Ruby has while loops and for loops not unlike Java, much Ruby code written in good style does
not use them. Instead, many classes have methods that take blocks. These blocks are almost closures. For
example, integers have a times method that takes a block and executes it the number of times you would
imagine. For example,

x.times { puts "hi" }

prints "hi" 3 times if x is bound to 3 in the envioronment. To pass a block to a method, you put it in braces
after the method call. The example above has no regular arguments, but a method can take any number of
regular arguments and then 0 or 1 block.

Blocks are closures in the sense that they can refer to variables in scope where the block is defined. For
example, after this program executes, y is bound to 10:

y = 7

[4,6,8].each { y += 1 }

1

Here [4,6,8] is an array with with 3 elements. Arrays have a method each that takes a block and executes
it once for each element. Typically, however, we want the block to be passed each array element. We do
that like this, for example to sum an array’s elements and print out the running sum at each point:

sum = 0

[4,6,8].each { |x|

sum += x

puts sum

}

When calling a method that takes a block, you should know how many arguments will be passed to the block
when it is called. For the each method in Array, the answer is 1, but as the first example showed, you can
ignore some arguments by writing fewer variables between the | characters (or omitting them entirely).

Many collections, including arrays, have a variety of block-taking methods that look very familiar to
functional programmers. For example, inject is just like the fold we studied in ML:

sum = [4,6,8].inject(0) { |acc,elt| acc + elt }

The argument to inject is the initial accumulator. If you omit it, inject will use the 0th element of the
array as the initial accumulator and start with the next array element. Some other useful iterators (methods
that take care of iterating through the elements in one way or another) are map and any?. In two lectures,
we will learn how many of the iterators are actually defined in terms of each in a mixin so that they do not
have to be reimplemented for each collection.

While many uses of blocks involve calling methods in the standard library, you can also define your own
methods that take blocks. In fact, you can pass a block to any method. The method body calls the block
using the yield keyword. For example, this code prints "hi" 3 times:

def foo x

if x

yield

else

yield

yield

end

foo true { puts "hi" }

foo false { puts "hi" }

To pass arguments to a block, you put the arguments after the yield, e.g., yield 7 or yield(8,"str").
Blocks are not quite closures because they are not objects. We cannot store them in a field, pass them

as a regular method argument, assign them to a variable, put them in an array, etc. (Notice in ML and
Scheme, we could do the equivalent things with closures.) However, Ruby has “real” closures too: The class
Proc has instances that are closures. The method call in Proc is how you apply the closure to arguments,
for example x.call (for no arguments) or x.call(3,4).

To make a Proc out of a block, just write lambda { ... } where { ... } is any block. Interestingly,
lambda is not a keyword. It is just a method in class Object (and every class is a subclass of Object, so
lambda is available everywhere) that creates a Proc out of a block it is passed. You can define your own
methods that do this too, but we won’t go into the syntax that accomplishes this.

Subclassing, Inheritance, and Dynamic Dispatch

Subclassing is an essential feature of object-oriented programming. If class C is a subclass of D than every
instance of C is also an instance of D. The definition of C can inherit the methods of D, i.e., they are part of
C’s definition too. Moreover, C can extend by defining new methods that C has and D doesn’t. And it can
override methods, by changing their definition from the definition in the superclass. In Ruby, this is much

2

like in Java. In Java, a sublcass also inherits the field definitions of the superclass, but in Ruby fields are
not part of a class definition.

In the code posted with this lecture, we considered an example with the class Point and three different
subclasses:

• ColorPoint, which is like a Point except it also has a color field

• ThreeDPoint, which is like a Point except it also has a z coordinate, and this changes how an object’s
distFromOrigin is computed

• PolarPoint, which has all the functionality of a Point but its constructor takes an r and theta instead
of an x and y — it also uses different fields to represent points differently

Each of these subclasses raised interesting design issues, and PolarPoint reveals the biggest semantic
difference between functional and object-oriented programming.

For ColorPoint, why define a new class rather than just add new methods to Point? Either is fine
depending what we want to do. Notice that if we add methods to Point, then all subclasses of Point, such
as ThreeDPoint and PolarPoint, will also have the new methods.

For ThreeDPoint, computer scientists have been arguing for decades about whether this subclassing is
good style. On the one hand, it does let us reuse quite a bit of code, such as the methods x, x=, y, y=,
and more thanks to calls to super in the methods we override. On the other hand, one could argue that a
ThreeDPoint is not conceptually a Point, so passing the former when some code expects the latter could be
inappropriate. Others say a ThreeDPoint is a Point because you can “think of it” as its projection onto the
plane where z equals 0. We will not resolve this legendary argument, but you should appreciate that often
subclassing is bad/confusing style even if it lets you reuse some code in a superclass.

The most interesting subclass we considered was PolarPoint. It overrides every method from Point

except distFromOrigin2. The constructor behaves differently since it creates different fields (and no @x and
@y fields are created since it does not call super). It overrides the x, x=, y, and y= methods in a way that
preserves a point’s behavior. Recall that the attr_reader and attr_writer lines in the definition of Point
are just a shorthand for defining getter and setter methods. So a subclass is free to override these methods
with other definitions. Notice this is much more flexible than a Point class in Java with public fields x and
y. We also override distFromOrigin to take advantage of the fact that the polar representation of points
makes computing the result trivial.

The really interesting thing, though, is that we do not need to override distFromOrigin2. To see why,
consider the definition in the superclass:

def distFromOrigin2

Math.sqrt(x * x + y * y) # uses getter methods

end

Unlike the definition of distFromOrigin, this method uses other method calls for the arguments to the
multiplications. Recall this is just syntactic sugar for:

def distFromOrigin2

Math.sqrt(self.x() * self.x() + self.y() * self.y()) # uses getter methods

end

In the superclass, this can seem like an unnecessary complication since self.x() is just a method that
returns @x and methods of Point can access @x directly, as distFromOrigin does.

However, as you learned in your 100-level Java courses, overriding methods x and y in a subclass of
Point changes how distFromOrigin2 behaves in instances of the subclass. Given a PolarPoint instance,
its distFromOrigin2 method is defined with the code above, but when called, self.x and self.y will call
the methods defined in PolarPoint, not the methods defined in Point.

This semantics goes by many names, including dynamic dispatch, late binding, and virtual method calls.
There is nothing quite like it in functional programming, since the way self is treated in the environment
is special, as the next lecture considers in more detail.

3

