
CSE 341, Spring 2011, Lecture 18 Summary
Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of all
the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

This lecture considers two topics: (1) modularity and abstraction in Scheme (particularly extensions in
Racket), and (2) general notions of equivalence related to functions.

Scheme Modularity

In lecture 11, we first studied module systems. We learned how ML module systems provide namespace
management, hide private bindings, and enforce invariants by using abstract types. In this lecture, we will
consider how Racket’s define-struct also lets us enforce invariants although the approach can feel a bit
different. We will see how to do this “just” with local scope and then more conveniently with Racket’s
module system.

We will consider the same example we did in lecture 11, an interface for positive rational numbers whose
ML signature is:

sig

type rational

exception BadFrac

val make_frac : int * int -> rational

val add : rational * rational -> rational

val print_rat : rational -> unit

end

make_frac returns a rational only if its arguments are positive. print_rat always prints rationals in reduced
form (i.e., 2/3 instead of 6/9). Internal implementation decisions should not be visible to clients, so we
could change the implementation without clients knowing. Such decisions include (1) the representation of
rationals, (2) the existence of private helper functions, and (3) whether rationals are kept in reduced form
or just printed that way.

Consider first this approach, which achieves (2), but not (1) or (3):

(define-struct rat1 (num den))

(define pos-rat-funs1

(letrec

([gcd (lambda (x y) (cond [(= x y) x]

[(< x y) (gcd x (- y x))]

[#t (gcd y x)]))]

[reduce (lambda (r) (let ([d (gcd (rat1-num r) (rat1-den r))])

(make-rat1 (quotient (rat1-num r) d)

(quotient (rat1-den r) d))))]

[make-frac (lambda (x y)

(unless (and (integer? x) (> x 0)

(integer? y) (> y 0))

(error "bad rat"))

(reduce (make-rat1 x y)))]

[add (lambda (r1 r2)

(check-rat r1)

(check-rat r2)

(let ([a (rat1-num r1)][b (rat1-den r1)]

[c (rat1-num r2)][d (rat1-den r2)])

(reduce (make-rat1 (+ (* a d) (* b c))(* b d)))))]

1



[print-rat (lambda (r)

(check-rat r)

(print (rat1-num r))

(unless (= (rat1-den r) 1)

(begin (print ’/)

(print (rat1-den r)))))]

[check-rat (lambda (r)

(if (not (rat1? r))

(error "non-rational provided"))

(let ([x (rat1-num r)][y (rat1-den r)])

(if (or (not (integer? x))

(not (> x 0))

(not (integer? y))

(not (> y 0))

(not (= 1 (gcd x y))))

(error "invariants violated"))))])

(list make-frac add print-rat)))

(define make-frac (car pos-rat-funs1))

(define add (cadr pos-rat-funs1))

(define print-rat (caddr pos-rat-funs1))

Here we use no new features of Scheme. To encode the idea of private helper functions, we define our
conceptual module’s functions in a letrec and then have the body of the letrec return the conceptual
public functions in a list. So pos-rat-funs1 evaluates to a list of functions, all of which the outside world is
allowed to use. The “private” functions gcd and reduce are not in the list and therefore unavailable. Since
it is awkward and inconvenient to get functions out of a list before calling them, we define top-level variables
make-frac, add, and print-rat that are bound to the appropriate functions.

The reason this does not achieve modularity goals (1) and (3) is that clients can use the functions provided
by (define-struct rat1 (num den)). So they can simply call make-rat1 directly to make rationals with
negative numbers. Or they can use rat1-num and rat1-den to see if the result of a call to add1 is in reduced
form. Or they can use set-rat1-num! and set-rat1-den! to mutate the contents of a rational.

To try to protect our “library” from unexpected errors given clients’ abilities, each “public” function
needs to recheck the arguments, which we do with a call to the “private” function check-rat. This is
annoying, potentially expensive, and in other examples it might not even be possible. If you are worried
about concurrency, checking is even more difficult because a client could use set-rat1-num! after we check
something, so it would be necessary to copy a rational before doing the check.

In pure Scheme (i.e., without Racket’s additions), we can’t really do better. No matter how we represent
rationals, clients will know the representation, so we cannot change the representation without potentially
changing client behavior.1 If we choose to use a cons cell, there is nothing to prevent clients from using
cons? to determine that and car and cdr to get the parts for example.

However, with define-struct we define a new kind of thing. The only way to access the parts of
something made from make-rat1 is with rat1-num and rat1-den, so if we could hide those functions, we
can hide the representation of rationals. We could also hide rat1? so that we could even change the name
of our struct later, or we could choose to expose it so that clients can tell that they have a rat1 even though
cannot access its parts. The key to all this is to put the (define-struct rat1 (num den)) itself in some
scope and only expose some of the functions it defines to clients. In our example, this is a simple change
that then lets us significantly simplify the check-rat function and enforce all the invariants we want:

(define pos-rat-funs2

(let ()

1We probably can avoid mutation problems with strange approaches using first-class functions, but this is hardly the natural
way to do a simple thing like define a strong interface.

2



(define-struct rat2 (num den)) ; not globally visible now!

(letrec

([gcd ... unchanged ... ]

[reduce ... unchanged ... ]

[make-frac ... unchanged ... ]

[add ... unchanged ... ]

[print-rat ... unchanged ... ]

[check-rat (lambda (r) (if (not (rat2? r))

(error "non-rational provided")))])

(list make-frac add print-rat rat2?))))

(define make-frac (car pos-rat-funs2))

(define add (cadr pos-rat-funs2))

(define print-rat (caddr pos-rat-funs2))

(define rat? (cadddr pos-rat-funs2))

As discussed above, this version chooses to expose the predicate for rationals, but not the constructor, the
accessors, or the mutators.

Again, the essence of getting abstraction in a dynamically typed language is to make a new type of thing
like rat2 that clients have no way to “get at.” This seems quite different than our ML approach where we
could use an abstract type and rely on static type-checking to hide the representation of something that at
run-time really was, for example, just int*int. The end result — preserving our positive-rational invariants
— is essentially the same though.

While the above discussion demonstrated that the essence of abstract types in a dynamically typed
language is defining a new type of thing in a local scope, this whole technique of returning a list of functions
is not what programmers in Racket do. Instead Racket’s module system is much more convenient. Here is
our example using the module system:

(module pos-rat racket

(provide make-frac add print-rat rat?)

(define-struct rat (num den))

(define (my-gcd x y)

(cond [(= x y) x]

[(< x y) (my-gcd x (- y x))]

[#t (gcd y x)]))

(define (reduce r)

(let ([d (my-gcd (rat-num r) (rat-den r))])

(make-rat (quotient (rat-num r) d)

(quotient (rat-den r) d))))

(define (make-frac x y)

(unless (and (integer? x) (> x 0)

(integer? y) (> y 0))

(error "bad rat"))

(reduce (make-rat x y)))

(define (add r1 r2)

(check-rat r1)

(check-rat r2)

(let ([a (rat-num r1)][b (rat-den r1)]

[c (rat-num r2)][d (rat-den r2)])

(reduce (make-rat (+ (* a d) (* b c)) (* b d)))))

(define (print-rat r)

(check-rat r)

(print (rat-num r))

3



(unless (= (rat-den r) 1)

(begin (print ’/) (print (rat-den r)))))

(define (check-rat r)

(if (not (rat? r))

(error "non-rational provided"))))

While the actual module system has more features, we will consider just some basic features:

• The module special form takes a name for the module, a language in which the module is implemented
(we will ignore this, racket is the language variant we have been using for all our code), a provide list
that enumerates what bindings need to be defined in the module, and a list of bindings, expressions,
etc. like you would have at top-level.

• Only bindings listed in the provide list are available outside the module. So my-gcd, reduce, and
check-rat are private. Notice we can expose “part” of a define-struct as in our example where we
provide the predicate rat? but not the other functions.

Namespace management works a bit different than in ML. Instead of saying something like pos-rat.make-frac,
we have to use require to make a module’s provided bindings available. If we write,

(require ’pos-rat)

then all the provided functions in the pos-rat module are available until the end of the scope in which the
require appears. If it appears at top-level, that means until the end of the file. Then we just use the provided
functions without any extra letters or symbols, i.e., we just write things like (make-frac 2 4).

So far this is inconvenient if some of the provided functions in one required module have the same name
as those in another required module (or with some local bindings we have). So a variant of requiring a
module lets you write something like,

(require (prefix pr- ’pos-rat))

Now instead of this adding make-frac, add, print-rat, and rat? to the environment, it adds pr-make-frac,
pr-add, pr-print-rat, and pr-rat?. Notice the prefix we choose does not have to be the name of the
module; it can be any sequence of characters that can be part of a Scheme identifier.

Function Equivalences

When we studied equivalence in lecture 12, we learned that in programming languages we generally
consider two pieces of code equivalent if at any place in any program the produce the same results and
have the same side-effects (exceptions, printing, infinite loops, etc.). What we did not have time for was
investigating three ways that we can take certain functions or function calls in a program and produce an
equivalent program. Recognizing these situations can make you a better programmer and appreciate some
design goals and subtleties for programming languages.

Before considering the three situations and the important caveats about them, we need to know the
definition of free variables. For every expression (in Scheme or ML or really any language), we can compute
its free variables, which is just a set of variables. They are the variables that are used in the expression
somewhere where the binding for that use is not in the expressions. (So “free” here is in the sense of “not
bound”.) Consider this example:

(let ([x 2]

[y x])

(+ y z))

4



For the addition expression on the last line, the free variables are y and z because they are used but not
bound in the addition expression. However, for the whole let-expression, the free variables are x and z

because the use of x on the second line is not bound in the let-expression nor is the z on the last line, but
the y on the last line is bound on the second line. If we had let* instead of let, then the free variables of
the whole expression would be only z.

Notice that with functions, the free variables of the body is different than the free variables for the
function. In (lambda (x) (+ x y)), the function body (+ x y) has two free variables, but the function
itself has only one.

We now consider the three kinds of equivalence:

Systematic argument renaming: Typically callers are not affected by the names of function arguments.
So given (lambda (x) e), intuitively I should be able to change it to (lambda (y) e2) provided e2 is, “like
e except every x is changed to y.” We often make this sort of change to improve code readability, and it’s
important to know we are not affecting callers.

However, we need to be careful. Suppose we start with (lambda (x) (+ x y), which makes perfect
sense — we add to the argment whatever y is bound to in the environment. We cannot replace this function
with (lambda (y) (+ y y)), which has a different meaning — it doubles its argument. In general, the rule
is the new function-argument name must not be a free variable in the function body. Otherwise, our new
choice “captures” (this is actually the technical term for it) some uses of a “different” y in the function body
and that can change the function’s meaning.

Inlining: If we have a function call where we know what function we are calling, sometimes we can just
avoid the call altogether by replacing the call with just the function body where we replace all the uses of
the argument name with the actual argument. For example, given ((lambda (x) (+ x x)) (+ y 2)), we
could use this idea to simplify the expression to (+ (+ y 2) (+ y 2)). Compilers often do this sort of thing
to improve the efficiency of programs that have lots of calls to small functions.

However, there are several caveats. First, this can be wrong if the expression we are substituting in has
side-effects. For example, if we consider the example above with (begin (print "hi") (+ y 2)) instead
of (+ y 2), the original program would print once (since we evaluate arguments before doing a call), but
the result of inlining would print twice. We can’t even do the inlining if the argument might not terminate,
since maybe after the inlining the argument won’t be executed at all. For example, if e never terminates,
then ((lambda(x) (lambda (y) x)) e) does not terminate, but (lambda(y) e) does. (Calling it doesn’t
terminate, but that’s a different issue.)

Finally, consider this example: ((lambda(x) (lambda (y) x)) y). In an environment where y maps
to 17, this produces a closure that ignores its argument and returns 17. But after incorrect inlining, we get
(lambda (y) y), which is a closure that returns its argument. This is another capture problem. In general,
the expression we substitute in cannot have a free variable that ends up “underneath” a different binding of
the same variable after the inlining.

Unnecessary Function Wrapping: The same way that (if e #t #f) is a “beginner’s style mistake”
since it is equivalent to e, which is shorter and more clearly expresses the same idea (assuming that e

evaluates to a boolean, so perhaps the ML equivalent if e then true else false is a better example), it
is often unnecessary to wrap a function in another function. For example, consider (lambda () (f)). This
is a thunk that when called calls f with no arguments and returns the answer. Now consider f instead —
we still have an expression that evaluates to a thunk that when called returns the result of calling f. As
another example, the ML code List.map (fn x => SOME x) lst can be simplified to List.map SOME x,
since SOME and (fn x => SOME x) are equivalent functions.

In general, what we can often do is take a function of the form (lambda () (e))or (lambda (x) (e x))

or (lambda (x y) (e x y) etc. and replace it with just e. However, there are caveats. First, we need
that none of the arguments of the function we are removing are free variables in the expression e. This
was trivial in our examples above because this is never a problem with zero-argument functions and SOME

has no free variables. Second, we need that evaluating e always terminates and has no side-effects. (We
mean here evaluating e, not evaluating a call to the function produced by evaluating e.) For example,

5



(lambda () ((begin (print "hi") f))) and (begin (print "hi") f) are not equivalent — the first
one prints every time it is called and the second one prints only once when it is evaluated. These caveats
usually do not arise.

6


