
'

&

$

%

CSE 341:
Programming Languages

Hal Perkins

Spring 2011

Lecture 16— define-struct; Implementing higher-order functions

Hal Perkins CSE341 Spring 2011, Lecture 16 1

'

&

$

%

Data in Scheme
Recall ML’s approach to each-of, one-of, and self-referential types:

datatype t =

Foo of int | Bar of int * int | Baz of string * t

Pure Scheme’s approach:

• There is One Big Datatype holding every value.

• Built-in predicates like null?, number?, procedure?

• Primitives implicitly raise errors for “wrong variant”

• Use pairs (lists) for each-of types

• Can also use for one-of types with explicit “tags”

– Like our force/delay with a boolean field

– Symbols better style (e.g., ’apple, ’banana)

• Use helper functions like caddr (and/or define your own).

Hal Perkins CSE341 Spring 2011, Lecture 16 2

'

&

$

%

Dynamic typing

There is still good reason to have support for constructors:

• Make a foo that has fields x, y, z

• Test to see if you have a foo or not

But with dynamic typing:

• Constructors are not “grouped” into types (just added to the One

Big Datatype)

• The fields can hold anything

Orthogonally: We don’t have pattern-matching.

Hal Perkins CSE341 Spring 2011, Lecture 16 3

'

&

$

%

define-struct
DrScheme extends Scheme with define-struct, e.g.:

(define-struct card (suit value))

Semantics: Introduce several new bindings...

• constructor (make-card) that takes arguments and make values

(like cons)

• predicate (card?) that takes 1 argument, return #t only for

values made from the right constructor (like cons?).

• accessors (card-suit, card-value) that take 1 argument, return

a field, or call error for values not made from the right

constructor (like car and cdr).

• mutators (set-card-suit!, set-card-value!) that are like

accessors except they mutate field contents (like set-car! and

set-cdr!).

Hal Perkins CSE341 Spring 2011, Lecture 16 4

'

&

$

%

Idiom for ML datatypes

Instead of a datatype with n constructors, you just use

define-struct n times.

That “these n go together” is just convention.

Instead of case, you have a cond with n predicates and one

“catch-all” error case.

For homework 5:

;; a variable, e.g., (make-var "foo")

(define-struct var (string))

;; a constant number, e.g., (make-int 17)

(define-struct int (num))

(define-struct add (e1 e2)) ;; add two expressions

(define-struct ifgreater (e1 e2 e3 e4)) ;; etc.

...

Hal Perkins CSE341 Spring 2011, Lecture 16 5

'

&

$

%

define-struct is special

define-struct creates a new variant for The One Big Datatype.

Claim: define-struct is not a function.

Claim: define-struct is not a macro.

It could be a macro except for one key bit of its semantics: Values

built from the constructor cause every other predicate (including all

built-in ones like pair?) to return #f.

Advantage: abstraction and bug-catching (clients can’t “abuse” your

things as though they were something else)

Disadvantage: Can’t write “generic” code that has a case for every

possible variant in every Scheme program (like eval).

Hal Perkins CSE341 Spring 2011, Lecture 16 6

'

&

$

%

Implementing Languages

Mostly CSE 341 is about language meaning, not “how can an

implementation do that”, but it’s important to “dispel the magic”.

At super high-level, there are two ways to implement a language A:

• Write an interpreter in language B that evaluates a program in A

– Like we just saw for a little expression language

• Write a compiler in language B that translates a program in A to

a program in language C (and have an implementation of C)

In theory, this is just an implementation decision.

HW5: An interpreter for mupl in Scheme.

Most interesting thing about mupl: higher-order functions.

Hal Perkins CSE341 Spring 2011, Lecture 16 7

'

&

$

%

How is one language inside another?

How is:

(make-negate (make-add (make-const 2) (make-const 2)))

a “program” instead of

"- (2 + 2)"

Because parsing — turning a string/file into a tree of datatype-like

things is covered in CSE401.

These trees are called abstract-syntax trees (or ASTs).

They are ideal program representations for passing to an interpreter.

We can write them by hand, or write a parser, or write code that

produces them.

Hal Perkins CSE341 Spring 2011, Lecture 16 8

'

&

$

%

An interpreter

A “direct” language implementation is often just writing our

evaluation rules for our language in another language.

• Languages with variables need interpreters with environments

• “eval-prog” takes an environment and an expression and returns a

value (the subset of expressions that we define to be answers)

• An environment is just a mapping from variables to values (e.g.,

an association list)

• “eval-prog” uses recursion

– Example: To evaluate an addition expression, evaluate the two

subexpressions under the same environment, then...

• For homework 5, expressions & environments are all we need

– Exceptions or mutation can require more inputs/outputs to

“eval-prog”

Hal Perkins CSE341 Spring 2011, Lecture 16 9

'

&

$

%

Implementing Higher-Order Functions

The magic: How is the “right environment” around for lexical scope

(the environment from when the function was defined)?

Lack of magic: Implementation keeps it around!

Interpreter:

• The interpreter has a “current environment”

• To evaluate a function (expression), create a closure (value), a

pair of the function and the “current environment”.

• Application will now apply a closure to an argument: Interpret

function body, but instead of using “current environment”, use

closure’s environment extended with the argument.

Note: This is directly implementing the semantics from week 3.

Hal Perkins CSE341 Spring 2011, Lecture 16 10

'

&

$

%

Is that expensive?

Building a closure is easy; you already have the environment.

Since environments are immutable, it’s easy to share them.

Still, a given closure doesn’t need most of the environment, so for

space efficiency it can be worth it to make a new smaller environment

holding only the function’s free variables.

• That is, an approximation of the things a call to the function

might look up.

• Challenge problem in homework 5

Hal Perkins CSE341 Spring 2011, Lecture 16 11

'

&

$

%

Compiling Higher-Order Functions

The key to the interpreter approach: The interpreter has an explicit

environment and can “change” it to implement lexical scope.

We can also compile higher-order functions to a language without

higher-order functions:

Instead of an implicit environment, we pass an explicit environment to

every function.

• As with interpreter, we build a closure to evaluate functions.

• But all functions now take one extra argument.

• Application passes a closure’s code its own environment for the

extra argument.

• Evaluating variables uses this extra argument.

– Compiler translates them to environment-reads.

Plus: Data-structure optimizations so variable-lookup is O(1)

Hal Perkins CSE341 Spring 2011, Lecture 16 12

