CSE 341, Spring 2008, Lecture 10 Summary

Standard Disclaimer: These comments may prove useful, but certainly are not a complete summary of
all the important stuff we did in class. They may make little sense if you missed class, but hopefully will help
you organize and process what you have learned.

This lecture covers 3 separate topics:
1. We complete our discussion of higher-order functions with one final example.

2. We discuss ML-style type inference to understand what type inference for a statically typed language
is and how ML’s algorithm to infer types is actually fairly straightforward.

3. We begin discussing modules, focusing first on namespace management and separate type-checking.

Higher-Order Functions Wrapup Example

Higher-order functions provide lots of conciseness, flexibility, and code reuse when used well. There are
also many different ways to do the same thing, and which is “best” is somewhat a matter of taste (which
approach is most readable, easiest to get correct, etc.) and efficiency. Consider the simple example of
counting how many Os are in an int list. Before learning higher-order functions, we might have written:

fun count_zeroes_1 1lst =
case lst of
[1 =0
| first::rest => (if first=0 then 1 else 0) + count_zeroes_1 rest

Using a couple higher-order functions defined in the List library we can instead think of counting Os as
having two parts: get rid of non-zeros and see how many elements remain:

fun count_zeroes_2 1lst =
List.length (List.filter (fn x => x=0) lst)

We could then recognize that this approach is essentially function composition with partial application
of the curried filter function:

val count_zeroes_3 = List.length o (List.filter (fn x => x=0))

And if we really wanted to use lots of currying, we could recognize that if = were itself a curried function,
we could partially apply it to 0 to get a function that compares numbers to 0. Now, = is not a curried
function, but we can make it one like this:

e Use the ML keyword op for turning an infix function into a regular function. For example, op+ is a
function of type int*int->int and op= is a function of type ’’a*’’a->bool.

e Use a helper function to convert a function that takes a pair to a function that takes two curried
arguments.

fun curry f x y = £ (%, y)
val count_zeroes_3’ = List.length o (List.filter ((curry (op=)) 0))

These “filter then count” approaches seem fine especially when you are trying to be a productive pro-
grammer and counting Os is hardly where you should spend a lot of human time. But they are inefficient
since they create a whole list (the list holding the 0s) just to see how long the list is. Our initial approach
did not have this inefficiency, nor does a solution using foldl:

fun count_zeroes_4 1lst =
List.foldl (fn (x,y) => (if x=0 then 1 else 0) + y) O lst

We can recognize that this can be simplified using partial application of the curried fo1dl function (much
like if e then true else false can be simplified to e):



val count_zeroes_5 =
List.foldl (fn (hd,acc) => (if hd=0 then 1 else 0) + acc) O

While these uses of foldl work great, if we plan to write lots of functions that count list elements, we
might instead write our own higher-order function that makes such counting easier:

fun count_listl f 1st =
case lst of
=0
| hd::tl => (if f hd then 1 else 0) + count_listl f tl

Here we have abstracted out whether an element should be counted, letting callers pass in a function f that
takes a list element and returns a bool. Here are two ways to pass in functions that see if an element is O:

val count_zeroes_6 = count_listl (fn x => x=0)
val count_zeroes_6’ = count_listl (curry (op=) 0)

While count_list1 is a bit more convenient for callers than foldl — assuming that callers want to do
counting — we could implment the count-list function in terms of fold:

fun count_list2 f =
List.foldl (fn (hd,acc) => (if f hd then 1 else 0) + acc) O

This implementation decision is irrelevant to callers; they use count_list2 exactly like count_list1:

val count_zeroes_7 = count_list2 (fn x => x=0)
val count_zeroes_7’ = count_list2 (curry (op=) 0)

Type Inference

While we have been using ML type inference for a couple weeks, we have not studied it carefully. Let’s
first carefully define what type inference is and then see via several examples how ML type inference works.

Java and ML are statically typed languages, meaning every binding has a type that is determined “at
compile-time” i.e., before any part of the program is run. The type-checker is a compile-time procedure
that either accepts or rejects a program. By contrast, Scheme and Ruby are dynamically-typed languages;
the type of a binding is not determined ahead of time and computations like binding 42 to x and then
treating x as a string result in run-time errors. We will spend a later lecture comparing the advantages and
disadvantages of static versus dynamic typing.

Unlike Java, ML is implicitly typed, meaning programmers rarely need to write down the types of bindings.
This is often convenient (though some disagree as to whether it makes code easier or harder to read), but in
no way changes the fact that ML is statically typed. Rather, the type-checker has to be more sophisticated
because it must infer (i.e., figure out) what the type annotations “would have been” had the programmers
written all of them. In principle, type inference and type checking could be separate steps (the inferencer
could do its thing and the checker could see if the result should type-check), but in practice they are often
merged into “the type-checker”. Note that a correct type-inferencer must find a solution to what all the
types should be whenever such a solution exists, else it must reject the program.

Whether type inference for a particular programming language is easy, hard, or impossible (in the halting-
problem sense of CSE322) is often hard to determine. It is not proportional to how permissive the type
system is. For example, the “extreme” type systems that “accept everything” and “accept nothing” are both
very easy to do inference for.

ML was rather cleverly designed so that type inference is a straightforward algorithm. We will demon-
strate that algorithm with a few examples; writing down the whole thing in code is not difficult but we will
choose not to do so. ML type inference ends up intertwined with parametric polymorphism — when the
inferencer determines a function’s argument or result “could be anything” the resulting type uses ’a, ’b,
etc. — but inference and polymorphism are separate concepts: a language could have one or the other. For
example, Java has generics but no inference. We will study parametric polymorphism more carefully in a
couple lectures.

Here is an overview of how ML type inference works (examples to follow):



e It determines the types of bindings in order, using the types of earlier bindings to infer the types of
later ones. This is why you cannot use later bindings in a file. (When you need to, you use mutual
recursion and type inference determines the types of all the mutually recursive bindings together.)

e For each val or fun binding, it analyzes the binding to determine necessary facts about its type. For
example, if we see the expression x+1, we conclude that x must have type int. We gather similar facts
for function calls, pattern-matches, etc.

o Afterward, use type variables (e.g., >a) for any unconstrained types in function arguments or results.
e (There is one extra restriction to be discussed in lecture 12.)

The amazing fact about the ML type system is that “going in order” this way never causes us to unnecessarily
reject a program that could type-check nor do we ever accept a program we should not. So explicit type
annotations really are optional (unless you use features like #1).

As a first example, consider inferring the type for this function:

fun f x =
let val (y,z) = x in
(abs y) + z
end

Here is how we can infer the type:

e Looking at the first line, £ must have type T1->T_2 for some types T1 and T2 and in the function body
f has this type and x has type T1.

e Looking at the val-binding, x must be a pair type (else the pattern-match makes no sense), so in fact
T1=T3%T4 for some T3 and T4, and y has type T3 and z has type T4.

e Looking at the addition expression, we know from the context that abs has type int->int, so y has
type T3 means T3=int. Similarly, since abs y has type int, the other argument to + must have type
int, so z having type T4 means T4=int.

e Since the type of the addition expression is int, the type of the let-expression is int. And since the
type of the let-expression is int, the return type of f is int, i.e., T2=int.

Putting all these constraints together, T1=int*int (since T1=T3#T4) and T2=int, so f has type int*int->int.
Note that humans doing type inference “in their head” often take shortcuts just like humans doing
long division in their head, but the point is there is an algorithm that methodically goes through the code
gathering constraints and putting them together to get the answer.
Next example:

fun sum 1lst =
case lst of
0=>0
| hd::tl => hd + (sum tl)

e From the first line, there exists types T1 and T2 such that sum has type T1->T2 and 1st has type T1.

e Looking at the case-expression, 1st must have a type that is compatible with all of the patterns.
Looking at the patterns, both of them match any list, since they are built from list constructors (in
the hd::tl case the subpatterns match anything of any type). So since 1st has type T1, in fact
T1=T3 list from some type T3.

e Looking at the right-hand sides of the case branches, we know they must have the same type as each
other and this type is T2. Since 0 has type int, T2=int.



e Looking at the second case branch, we type-check it in a context where hd and t1 are available. Since
we are matching the pattern hd: :t1 against a T3 list, it must be that hd has type T3 and t1 has type
T3 list. Now looking at the right-hand side, we add hd, so in fact T3=int. Moreover, the recursive
call type-checks because tl has type T3 list and T3 1list=T1 and sum has type T1->T2. Finally,
since T2=int, adding sum t1 type-checks. Notice that before we got to sum t1 we had already inferred
everything, but we still have to check that types are used consistently and reject otherwise (e.g., if we
had written sum hd, that cannot type-check).

Putting everything together, we get sum has type int list -> int.

Our remaining examples will infer polymorphic types. All we do is follow the same procedure we did
above, but when we are done we will have some parts of the function’s type that are still unconstrained. For
each Ti that “can be anything” we use a type variable (’a, ’b, etc.).

fun length 1st =
case 1lst of
(1 =>0
| hd::tl => 1 + (length t1)

Type inference proceeds much like with sum: We end up determining
e length has type T1->T2
e 1st has type T1
e T1=T3 list (due to the pattern-match)

e T2=int because 0 can be the result of a call to length.

hd has type T3 and t1 has type T3 list

e The recursive call length tl type-checks because tl has type T3 list, which is T1, the argument
type of length. And we can add the result because T2=int.

So we have all the same constraints as for sum, except we do not have T3=int. In fact, T3 can be anything
and length will type-check. So type inference recognizes that when it is all done, it has length with type
T3 list -> int and T3 can be anything. So we end up with the type ’a -> int, as expected. Again the
rule is simple: for each Ti in the final result that can’t be constrained, we use a type variable.

Final example:

fun compose (f,g) = fn x => f (g x)

e Since the argument to compose must be a pair (from the pattern used for its argument), compose has
type T1xT2->T3, f has type T1 and g has type T2.

e Since compose returns a function, T3 is some T4->T5 where in that function’s body, x has type T4.
e So g must have type T4->T6 for some T6, i.e., T2=T4->T6.
e And f must have type T6->T7 for some T7, i.e., T1=T6->T7.

e But the result of f is the result of the function returned by compose, so T7=T5 and so T1=T6->T5.

Putting together T1=T6->T5 and T2=T4->T6 and T3=T4->T5 we have a type for compose of
(T6->T5) *(T4->T6) -> (T4->T5). There is nothing else to constrain the types T4, T5, and T6, so we
replace them consistently to end up with (?a->’b)*(’c->’a) -> (’c->’b) as expected (and the last set
of parentheses are optional, but that is just syntax).

Now that we have seen how ML type inference works, we can make two interesting observations:

e Inference would be more difficult if ML had subtyping (e.g., if every triple could also be a pair) because
we would not be able to conclude things like, “T3=T1*T2” since the equals would be overly restrictive.



e Inference would be more difficult if ML did not have parametric polymorphism since we would have to
pick some type for functions like length and compose and that could depend on how they are used.

Modules for Namespace Management

To learn the basics of ML, pattern-matching, and functional programming, we have written fairly small
programs that are just a sequence of bindings. For larger programs, it definitely helps to have more structure.
In ML, we can use structures to define modules that together are a collection of bindings. At its simplest,
you can just write structure Name = struct bindings end where Name is the name of your structure
(you can pick anything; capitalization is a convention) and bindings is any list of bindings, containing
values, functions, exceptions, datatypes, and types. Inside of the structure you can use earlier bindings just
like we have been doing “at top-level” (i.e., outside of any module). Outside of the structure, you can refer
to a binding b in Name by writing Name.b. This is exactly what we have been doing to use functions like
List.foldl; now you know how to define your own structures.

Used like this, structures are providing just namespace management, a way to avoid different bindings
in different parts of the program from shadowing each other. That is very useful, but not particularly
interesting. Much more interesting is giving structures signatures, which are types for modules and let us
provide strict interfaces that code outside the module must obey. The next lecture will describe several
ways to do this; here we just show one way to write down an explicit signature for a module. Here is an
example signature definition and structure definition that says the structure must have the signature (i.e.,
type) MATHLIB:

signature MATHLIB =

sig

val fact : int -> int
val half_pi : real

val doubler : int -> int
end

structure MyMathLib :> MATHLIB =
struct
fun fact x =

if x=0

then 1

else x * fact (x - 1)

val half_pi = Math.pi / 2.0

fun doubler y =y + y
end

Because of the :> MATHLIB, the structure MyMathLib will typecheck only if it actually provides everything
the signature MATHLIB claims it does and with the right types. Signatures can also contain datatype,
exception, and type bindings. Because we check the signature when we compile MyMathLib, we can use
this information when we check any code that uses MyMathLib. In other words, we can just check clients
assuming that the signature is correct.

What we will do in the next lecture is consider signatures for structures that hide things about the
implementation. This abstraction is an essential tool in software engineering because it lets us change the
implementation without clients being able to tell thanks to the signature.



