
University of Washington

 Programming Languages
A few bits of history

A (biased, incomplete, selective) collection of impressions

Hal Perkins

Spring 2011

Programming Languages - Spring 2011 1

University of Washington

Some Sources & References

 History of Programming Languages conference proceedings
(1978, 1993, 2007)
 Links to proceedings and papers on the course web

 50 in 50: multimedia presentation by Guy Steele and Richard
Gabriel
 Several versions on the web - links on the course site

 Best 50 min. lecture about PL you’re likely to see (including this one)

 Wikipedia is pretty good on many of these topics

 Various History of Computing journals, web archives, …

Programming Languages - Spring 2011 2

University of Washington

In the beginning…

 1940’s, 1950’s – assembly language
 A step up from programming in octal (base 8)

 First software libraries – sin, cos, sqrt

 Each new computer had its own machine/assembler language
 Computer architecture (family of computers with a common instruction

set) didn’t appear until the IBM 360 series in 1964

 Had to recode everything when you got a new computer

Programming Languages - Spring 2011 3

University of Washington

 1954 FORTRAN – IBM Mathematical
FORmula TRANslating System
 Goal: Design a translator to convert “scientific” source code

into IBM 704 machine code with execution speed comparable
to hand-written code

 IBM 704: Hardware floating-point, index registers, …

 The compiler was the important piece – the language was
made up as the project went along
 Assignment, DO (counting) loops, integer and floating-point values,

subscripted variables (up to 3 dimensions but limited forms for
subscripts, stored in column-major order), sequential I/O for cards,
printing, tapes

 Many constructs inspired by need to exploit IBM 704 instructions

 FORTRAN I released in 1957

 Subroutines and functions appeared in FORTRAN II in 1958
 No recursion until FORTRAN 77

Programming Languages - Spring 2011 4

University of Washington

From the first FORTRAN manual

Programming Languages - Spring 2011 5

University of Washington

Impact

 The FORTRAN I and II compilers were the best optimizing
compilers until IBM 360’s FORTRAN H in 1968-69
 Nobody would have taken it seriously if the code hadn’t been fast

 But almost immediately efficiency didn’t matter – the
advantages of writing relatively portable code quickly were
more important

 FORTRAN compilers appeared for most major systems within
a few years

Programming Languages - Spring 2011 6

University of Washington

1958 LISP

 List Processing language

 Symbolic computation, not numbers

 S-expressions (lists, recursive data)

 Recursion, conditional expressions, λ-expressions (functions),
closures (FUNARG) – e.g. lexical scoping

 eval function that defined the language and served as an
interpreter

 Garbage collection to manage storage

 Clean mathematical semantics

 Original implementation on IBM 704 (cf FORTRAN)

 Major application area: Artificial intelligence

 Programming Languages - Spring 2011 7

University of Washington

ALGOL 60

 “Algol 60 was not only an improvement on its predecessors,
but also on nearly all its successors.”
 C. A. R. “Tony” Hoare

Programming Languages - Spring 2011 8

University of Washington

ALGOL 60

 Developed in 1958-1960

 Attempt to come up with a common language not tied to a single
vendor (e.g., IBM)

 International committee sponsored by ACM

 Primarily a numeric language

 Functions, procedures, assignment, loops, arrays, etc.

 Block structure – compound statements, nested scopes

 Recursive functions and call by value, call-by-name

 But no standardized I/O built in to the language (right idea: put it in
library routines, wrong: a standard set never appeared)

 Reference/publication/hardware representations
 a ← b vs a := b vs punch cards

 Formal syntax (Backus, based on ideas from linguistics)

Programming Languages - Spring 2011 9

University of Washington

Call-by-name & Jensen’s device

Programming Languages - Spring 2011 10

University of Washington

ALGOL 60 Implementations & Impact

 Implementation efforts in Europe and US; available on most
major computers (but often University efforts)

 Many standard techniques pioneered/discovered
 e.g., stack frames for recursive procedures: “Recursive Programming”

by E. W. Dijkstra

 “ALGOL 60 is slow” – reputation compared to FORTRAN
because of mismatch with (hostile?) computer architectures
 Can a language (vs an implementation) be said to be “slow” or “fast”?

 Burroughs 5000 – stack machine designed to run ALGOL
 OS and compilers written in ALGOL

 But FORTRAN arrays were slow – hardware/software mismatch

 FORTRAN had too much of a lead for ALGOL 60 to displace it.
Lack of standard I/O and dialect differences didn’t help.

 Programming Languages - Spring 2011 11

University of Washington

COBOL 60 Common Business Oriented Language

 Goal: come up with a common language to handle business
data processing – sponsored by DoD

 Key technical contribution was attention to data layouts – the
original records (struct, each-of, etc.)
 Particular attention to mapping program data to external storage

layout

 Hierarchical data organization

 Program logic separated from data and environment defs.

 Some hope that English-like statements would make it
possible for “end users” to write programs

 Dominant business programming language into the 90s, and
your paycheck is probably printed by it today

Programming Languages - Spring 2011 12

University of Washington

COBOL 60

Programming Languages - Spring 2011 13

University of Washington

 mid 60s: PL/I – If FORTRAN and COBOL are a
good idea, let’s combine them
 Big idea: combine scientific and business computing in one

language, just like IBM 360 hardware for both

 Led by IBM and IBM user groups

 Variety of data types for numeric and string processing, bits,
COBOL-like string editing, array expressions, records, but…

 Lessons learned about unexpected interactions when
language features are combined

 Rudimentary exception handling (ON-conditions)

 Shipped on IBM mainframes, but implemented by other
manufacturers and fairly wide use in 60s-70s.

 Primary implementation language for MULTICS (Bell Labs,
MIT, GE “information utility” project)

Programming Languages - Spring 2011 14

University of Washington

 Application Languages:
APL

 APL: A Programming Language (Kenneth Iverson, 1961)

 Data objects: arrays and matrices, also significant use in
hardware modeling (hardware = arrays/matrices of bits)

 Operations: Individual operations on array elements, but real
power was in higher-level operators on arrays like map, fold,
reduce, transpose, inner & outer product, etc.

 Elaborate mathematical character set: used a special golf-ball
element for IBM typewriters

 Implementation: interpreter; early implementation was
APL\360, APL2 followed in 70s, 80s

 Descendants still used in financial community (A+)

Programming Languages - Spring 2011 15

University of Washington

Application Languages: SNOBOL

 String processing language developed at Bell Labs in the 60s

 Pattern matching; unusual control structures

Programming Languages - Spring 2011 16

University of Washington

 SIMULA: Object Oriented Programming

 Developed at the Norwegian Computing Center, Oslo, by
Nygaard and Dahl

 Goal was a language that could be used for system
description and simulation

 Started in 1961, SIMULA I in 1964, SIMULA 67

 Layered objects and classes on top of ALGOL 60 (although not
always easy to recognize to modern eyes), virtual functions
(dynamic dispatch)

 Quasi-concurrency – activation stack as a graph; coroutines

Programming Languages - Spring 2011 17

University of Washington

ALGOL 68 – A Successor to ALGOL 60

 Done by an international committee with heavy European
representation

 Very generalized, “orthogonal”

 Complex definition – 2-level grammar (CFG for static
semantics to generate the grammar that generated type-
correct programs)

 Some implementations, some influence, particularly in
Europe, but never widely used in US

 Most important influence may be that it led Wirth to resign
from the ALGOL 68 committee and go off in a different
direction…

Programming Languages - Spring 2011 18

University of Washington

1970s Pascal

 Influences
 Dijkstra’s Structured Programming, and programming methodology in

general (the “software crisis”). Writing programs that are correct and
understandable from first principles.

 Hoare’s Notes on Data Structuring: types as a language concept;
fundamental combining operations: records, sequence, recursive data
structures (typed pointers)

 Goal was to produce a small language suitable for teaching
and developing real systems

 Touchstone language for 20+ years, and dominant teaching
language from late 70’s to at least early 90’s
 But not perfect: limitations in type system, e.g., array bounds were part

of the type, so couldn’t write general matrix multiply; difficult to get at
the bits for very low-level programming; “The Program” vs modules

Programming Languages - Spring 2011 19

University of Washington

Pascal Implementations

 Initial implementation written in Pascal (several thousand
lines), then hand compiled to CDC assembly language
 Fixed a dozen bugs, then recompiled itself to become self hosting

 Pascal-P portable compiler by 1974, written in Pascal
 Compiler generated code for a simple stack machine (p-code)

 Stack machine interpreter supplied in Pascal, but easy to recode in
almost anything else

 Once the interpreter was running, it could be used to run the compiler
and modify it to generate native code for the local machine

 Pascal found on almost every known computer within a couple of years

 Also found its way onto microcomputers for teaching: UCSD Pascal

 Used in commercial systems: Original Mac OS and software
stack written in Pascal (+ core assembly language)

Programming Languages - Spring 2011 20

University of Washington

1973 C (ANSI C in 1983)

 Developed at Bell Labs in early 70s, same timeframe as Pascal

 Ancestry is CPL (Strachy, Cambridge) -> BCPL -> B -> C
 (C is B with byte addressing instead of words)

 Programs are a collection of functions, one of which is “main”

 Unlike Pascal, designed to allow programmer to get close to
the hardware, and no attempt to protect programmer from
himself (“the programmer knows what he’s doing”)

 Primary implementation language for Unix
 Therefore became ubiquitous when Unix became ubiquitous on

microcomputers and early workstations

Programming Languages - Spring 2011 21

University of Washington

Abstract Data Types and Encapsulation

 By the early 70’s modularity emerged as a dominant theme in
language design

 Key ideas:
 Encapsulation / information hiding: systems should be built from

modules connected by narrow interfaces; implementation details
should be private/hidden

 Abstract Data Types: Data abstractions consist of both the data
structures themselves (linked list, array, whatever) and the operations
on them (stack push/pop/top), and these should be packaged together

 Research languages included CLU (Liskov, MIT), Alphard
(Wulf, Shaw, CMU)
 Focus was modules and ADTs, not objects as in Simula

Programming Languages - Spring 2011 22

University of Washington

Late 70’s: Mesa (Xerox PARC)

 Modular programming
 Each module has two or more source files: definition (interface) plus

one or more implementation files

 Strong type checking across module boundaries
 But “unsafe” modules could be used for low-level programming

 Exception handling

 Developed on the Xerox Alto

 Successors included Cedar (added gc among other things)

 Implementation language for Xerox Star – first WYSIWYG
workstations (commercial flop, but then there was the Mac…)

 Strong influence on Modula 2, Ada, Java…

Programming Languages - Spring 2011 23

University of Washington

1980 - Ada

 DoD sponsored language to replace a cacophony of languages
inside DoD with a single, safe language

 Strongly typed, modules (but not objects originally), dynamic
storage management, exception handling, generics

 Explicitly addressed concurrency in the language definition

 Focus on compile-time checks to avoid runtime errors

 Reasonably successful in safety-critical and other DoD
applications, but expensive compilers, etc. Never became the
dominant language for mainstream programming

Programming Languages - Spring 2011 24

University of Washington

Modula and Oberon

 Wirth’s successors to Pascal

 Modular programming

 Modula 2 after Wirth spent a sabbatical year at Xerox PARC
in 1976, then went home and created his own language and
workstation hardware to run it

 Oberon added objects a decade later

 Modula 3 developed by others at DEC SRC late 80’s
 Lots of PARC people; the “next Mesa”?

 Almost became the “next” teaching language, but then the Java
stampede happened

Programming Languages - Spring 2011 25

University of Washington

Smalltalk

 Developed at Xerox PARC in early 70’s, Alan Kay
 First version in 1972; significant revision in 1976

 Smalltalk 80 was the widely released version
 Language + environment, graphics, personal machines, rapid prototyping /

exploratory programming, programming for kids; Dynabook vision
 Lives on as Squeak
 Still used in the financial community for fast prototyping and modeling

 Concepts
 Everything is an object
 Objects are instances of classes
 Computation is objects sending messages to each other

 Build a system that had the right abstractions; the hardware will
eventually catch up

 Implementation: Smalltalk virtual machine – byte code interpreter
 Research implementation at Berkeley on early Sun workstations

 Generational GC (Ungar) among other things

Programming Languages - Spring 2011 26

University of Washington

1987-95: Self

 David Ungar and Randall Smith at Xerox PARC

 Question: If an object-oriented system is all about objects
sending messages to each other, why do you need classes?

 Self is all about objects and messages
 Interactive environment like Smalltalk

 With no classes, create new objects by cloning existing ones

 Implementation technology: To get adequate efficiency
implementation needs to discover commonalities between
objects, inline function calls aggressively, dynamic caches, …
 Key ideas behind today’s Javascript compiler arms race come from the

Self papers from 20 years ago

 Code from Craig Chambers’ PhD thesis under Ungar is said to be
recognizable in Java’s current Hotspot virtual machine

Programming Languages - Spring 2011 27

University of Washington

1980s – C++

 Developed by Stroustrup at Bell Labs

 Initial goal was to build something as expressive as Simula for
simulations, but with the runtime efficiency of C

 First implementation was as a set of C preprocessor macros(!)
 “C with Classes”

 Quickly turned into a real programming language with C as its
(almost completely unmodified) core

 Huge language – many pragmatic decisions, lots of things that
make PL types queasy

 If you read the papers, the big-picture design and vision have
been fairly consistent for 20+ years

Programming Languages - Spring 2011 28

University of Washington

1995 - Java

 Early 90s: Sun decides it wants to sell more SPARC chips by
selling embedded systems development kits
 But need a software development environment to do that

 Considered Smalltalk(!) (too expensive), C++ (too complex)

 Designed Oak language instead – subset of C++ heavily
influenced by Smalltalk, Mesa, others

 Then two non-technical influences: internet, Microsoft
 Internet as a “platform” alternative to Windows/msft domination

 Pointy-headed bosses stampede: Java, Java, Java; web, web, web

 Trademark search: Oak can’t be used – so it’s renamed Java

 Chaos ensues: Java everywhere, interns everywhere to
implement much larger libraries, etc.

Programming Languages - Spring 2011 29

University of Washington

Java technically

 Safe, strong typing, attempts to have no semantic loopholes
 Generics added in Java 1.5, 2004

 Concurrency and garbage collection baked in

 Portable: compiler target is a byte code machine (.class files)
 Compiler output can be interpreted directly (original JVM and current

Hotspot), or compiled to native code (Hotspot)

 .class files contain symbolic information about compiled classes, not
just executable byte codes

 Just-in-time compilers (JIT): monitor code as it runs, identify
frequently executed code, then compile on the fly into native
code; backpatch interpreted code to jump to compiled code
 JIT compiler has all the information available to typical optimizing

compilers (from .class files) and performs standard optimizations

 Performance comparable to C/C++ these days for many things

Programming Languages - Spring 2011 30

University of Washington

C# / Common Language Runtime

 Background - Java
 Microsoft had one of the best Java 1.0/1.1 environments; started adding

“extensions” to standard libraries to make code tie better to Windows

 Sun sues Microsoft for violating “pure Java” contract; Microsoft loses,
never able to get license for Java 1.2 (new collection classes) and later

 Background - DLL Hell
 Problems with incompatible versions of dynamically linked libraries trying

to coexist on the same system for different programs

 Technical (& business) solution: Common Language Runtime and
Java-like language C#, with Windows extensions
 CLR incorporated ideas from a wide selection of the PL community

 Extensions allow for unsafe modules, mixing managed code with older code
that uses old abstractions/runtime structures (COM, DCOM)

 Microsoft Intermediate Language (MSIL) is a lot like Java bytecodes

 One key difference: always compiled to native code before execution

Programming Languages - Spring 2011 31

University of Washington

 Meanwhile, in the Land of LISP…

 LISP was the dominant language in the AI community
throughout the 60’s and 70’s

 By the mid 60’s dialects started to proliferate:
 MacLisp (MIT)

 BBN-LISP

 Interlisp (Xerox PARC)

 Various LISP machines (special-purpose machines)

 Franz Lisp (Berkeley Unix)

 Others…

 1975: Scheme (MIT, Sussman & Steele; Steele’s MS thesis)

 1984: Common LISP – DoD ARPA attempt to mandate a
common dialect (so groups they funded could share code)
 Much petty behavior, hurt feelings, and rivalries along the way

Programming Languages - Spring 2011 32

University of Washington

Functional Programming – ML family

 ML developed in early 1970s at Edinburgh (Milner & others)

 Original use as a language for writing proof tactics for
automatic theorem proving systems

 Major research results in type inference and type systems
(Hindley-Milner algorithm), polymorphism

 Modern dialects
 SML (Standard ML) 1990, 1997

 OCaml (INRIA, France) 1996

 F# (Microsoft, standard part of Visual Studio 2010)

Programming Languages - Spring 2011 33

University of Washington

Functional Programming – Haskell

 Also a strong, statically typed functional language

 Originally defined in late 80’s, first release in 1990, core group
at Glasgow

 Key difference: lazy evaluation is the norm

 Many contributions to type theory and language design

 Haskell draws a careful distinction between the purely
functional part and impure code; theory of Monads to deal
with I/O and other side effects in a functional system

 Now mostly hosted at Microsoft Research, Cambridge
(England)
 Right down the hall from the F# folks

Programming Languages - Spring 2011 34

University of Washington

Functional Programming redux

 First-class functions, polymorphic types, immutable data,
type theory

 These have been around for 30+ years, but are starting to
show up in all sorts of interesting places
 Databases (Microsoft LINQ)

 Big data & concurrency (Google MapReduce, open source Hadoop)

 Mainstream languages (lambdas and closures in recent Java, C#)

 Parallel programming (multicore)

 Software tools for analyzing bugs, safety, more…

 Next?

Programming Languages - Spring 2011 35

University of Washington

Of things not covered

 Basic

 “Visual programming” languages

 Languages for beginners / non-programmers: Logo,
Processing (artists as well as beginners), Alice

 Constraint and logic languages (prolog, clpr, excel(!))

 Objective C (C meets Smalltalk, the “other” object-oriented
extension to C; used in NeXt/Apple systems, your iGadget)

 Scripting languages (Perl, Python, Ruby, …)
 Ruby is the most interesting of this bunch, combining scripting with

Smalltalk semantics and other PL ideas

 Javascript

 Many more…

Programming Languages - Spring 2011 36

University of Washington

Language Futures

 (Editorial opinion) The Java stampede knocked the wind out of new
programming language development for a decade

 New ideas have started to get traction in the last few years
 Languages built on top of JVM (Clojure, Groovy, Python and Ruby

implementations)

 New languages that combine functional and object-oriented programming
in interesting ways: Scala is a high-profile example

 Programming now is more about plugging components together
than in the old days, where hard-core CS was essential

 What language do you think you’ll be using in 10 years?

 What ideas will you contribute?

Programming Languages - Spring 2011 37

