
CSE341: Programming Languages
Course Information and Syllabus

Fall 2011

Logistics: The instructor is Dan Grossman. See the course homepage,
www.cs.washington.edu/education/courses/cse341/11au, for information about teaching assistants, of-
fice hours, etc. You must ensure your email settings work for promptly receiving course email-list messages.

Goals: Successful course participants will:

• Internalize an accurate understanding of what functional and object-oriented programs mean

• Develop the skills necessary to learn new programming languages quickly

• Master specific language concepts such that they can recognize them in strange guises

• Learn to evaluate the power and elegance of programming languages and their constructs

• Attain reasonable proficiency in the ML, Racket, and Ruby languages — and, as a by-product, become
more proficient in languages they already know

Grading and Exams: Do not miss the midterm or final.

Midterm 20% Monday October 31, in class
Final 25% Tuesday December 13, 2:30–4:20
Homeworks 55% approximately weekly (7 total)

Unless announced otherwise, all homeworks contribute equally to the 55%.

Late Policy: Homework is due at 11:00PM on the due date. This deadline is strict. For the entire quarter,
you have 3 “late days”. You are strongly advised to save them for emergencies. You may use at most 2 for
the same assignment. They must be used in 24-hour chunks. Advice: Do not skip class or section to work
on homework — this will cost you time in the long run.

Academic Integrity: Any attempt to misrepresent the work you did will be dealt with via the appropriate
University mechanisms, and your instructor will make every attempt to ensure the harshest allowable penalty.
The guidelines for this course and more information about academic integrity are in a separate document.
You are responsible for knowing the information in that document.

Text: The “required” text is: “Jeffrey D. Ullman. Elements of ML Programming, ML’97 Edition. 1998.”
We will not follow the text closely, but it may prove useful during the first few weeks. The “recommended”
text is: “Dave Thomas. Programming with Ruby. 2005.” The course will overlap only with several chapters
of this large book. You must decide how much you benefit from having a book in your hands; there are also
many free on-line resources. There is no specific book for the Ruby portion of the course.

In addition to these texts, the instructor has developed written reading notes corresponding to the lectures
that he will be editing throughout the course.

Advice:

• Your instructor aims for lecture and section to be some of the most enriching hours of your college
career. We will start promptly, and you should arrive punctually and well-rested.

• In every course, there is a danger that you will not learn much and thus lose the most important reason
to take the course. In 341, this danger is severe because it is easy to get “distracted by unfamiliar
surroundings” and never focus on the concepts you need to learn. These surroundings include new
syntax, editors, error messages, etc. Becoming comfortable with them is only one aspect of this course,
so you must get past it. When we use a new language, you must spend time on your own “getting
comfortable” in the new setting as quickly as possible so you do not start ignoring the course material.

1



• If you approach the course by saying, “I will have fun learning to think in new ways,” then you will do
well. If you instead say, “I will try to fit everything I see into the way I already look at programming,”
then you will get frustrated. By the end, it will relate back to what you know, but be patient.

Approximate Topic List (Subject to Change):

1. Syntax vs. semantics vs. idioms vs. libraries vs. tools

2. ML basics (bindings, conditionals, records, functions)

3. Recursive functions and recursive types

4. Algebraic datatypes, pattern matching

5. Higher-order functions; closures

6. Lexical scope

7. Currying

8. Syntactic sugar

9. Equivalence and effects

10. Parametric polymorphism and container types

11. Type inference

12. Abstract types and modules

13. Racket basics

14. Dynamic vs. static typing

15. Laziness and memoization

16. Implementing higher-order functions

17. Macros

18. Abstract types via dynamic type-creation

19. Ruby basics

20. Object-oriented programming is dynamic dispatch

21. Pure object-orientation

22. Implementing dynamic dispatch

23. Subtyping for records, functions, and objects

24. Class-based subtyping

25. Multiple inheritance, interfaces, and mixins

26. Subtyping vs. parametric polymorphism

27. Functional vs. OO extensibility

28. Basic garbage-collection implementation

To learn these topics using real programming languages and to gain experience with different languages, we
will use:

• Standard ML (a statically typed, mostly functional language) (approximately 4–5 weeks)

• Racket1 (a dynamically typed, mostly functional language) (approximately 2–3 weeks)

• Ruby (a dynamically typed, object-oriented language) (approxmately 2 weeks)

• Java (a statically typed, object-oriented language) (less than 1 week)

There are thousands of languages not on this list, many programming styles not represented, and many
language constructs and concepts that it would be great to study.

1Racket evolved from Scheme and is very similar.

2


