
CSE341, Fall 2011, Lecture 8 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

So far, the functions we have passed to or returned from other functions have been closed : the function
bodies used only the function’s argument(s) and any locally defined variables. But we know that functions
can do more than that: they can use any bindings that are in scope. Doing so in combination with higher-
order functions is very powerful, so it is crucial to learn effective idioms using this technique. But first it is
even more crucial to get the semantics right. This is probably the most subtle and important concept in the
entire course, so go slowly and read carefully.

Lexical Scope

The body of a function is evaluated in the environment where the function is defined, not the environment
where the function is called. Here is a very simple example to demonstrate the difference:

val x = 1

fun f y = x + y

val x = 2

val y = 3

val z = f (x+y)

In this example, f is bound to a function that takes an argument y. Its body also looks up x in the
environment where f was defined. Hence this function always increments its argument since the environment
at the definition maps x to 1. Later we have a different environment where f maps to this function, x maps
to 2, y maps to 3, and we make the call f x. Here is how evaluation proceeds:

• Look up f to get the previously described function.

• Evaluate the argument x+y in the current environment by looking up x and y, producing 5.

• Call the function with the argument 5, which means evaluating the body x+y in the “old” environment
where x maps to 1 extended with y mapping to 5. So the result is 6.

Notice the argument was evaluated in the current environment (producing 5), but the function body was
evaluated in the “old” environment. We discuss below why this semantics is desirable, but first we define this
semantics more precisely and understand the semantics with additional silly examples that use higher-order
functions.

This semantics is called lexical scope. The alternate, inferior semantics where you use the current environment
(which would produce 7 in the above example) is called dynamic scope.

Environments and Closures

We have said that functions are values, but we have not been precise about what that value exactly is. We
now explain that a function value has two parts, the code for the function (obviously) and the environment
that was current when we created the function. These two parts really do form a “pair” but we put “pair” in
quotation marks because it is not an ML pair, just something with two parts. You cannot access the parts
of the “pair” separately; all you can do is call the function. This call uses both parts because it evaluates
the code part using the environment part.

This “pair” is called a function closure or just closure. The reason is that while the code itself can have free
variables (variables that are not bound inside the code so they need to be bound by some outer environment),

1



the closure carries with it an environment that provides all these bindings. So the closure overall is “closed”
— it has everything it needs to produce a function result given a function argument.

In the example above, the binding fun f y = x + y bound f to a closure. The code part is the function
fn y => x + y and the environment part maps x to 1. Therefore, any call to this closure will return y+1.

(Silly) Examples Including Higher-Order Functions

Lexical scope and closures get more interesting when we have higher-order functions, but the semantics
already described will lead us to the right answers.

Example 1:

val x = 1

fun f y =

let

val x = y+1

in

fn z => x + y + z

end

val x = 3

val g = f 4

val y = 5

val z = g 6

As in the first example, f is bound to a closure where the environment part maps x to 1. So when we later
evaluate f 4, we evaluate let val x = y + 1 in fn z => x + y + z end in the environment x maps to 1
extended to map y to 4. But then due to the let-binding we shadow x so we evaluate fn z => x + y + z in
an environment where x maps to 5 and y maps to 4. How do we evaluate a function like fn z => x + y + z?
We create a closure with the current environment. So f 4 returns a closure that, when called, will always
add 9 to its argument, no matter what the environment is at any call-site. Hence in the last line of the
example z will be bound to 15.

Example 2:

fun f g =

let

val x = 3

in

g 2

end

val x = 4

fun h y = x + y

val z = f h

In this example f is bound to a closure that takes another function g as an argument and returns the result
of g 2. The closure bound to h always adds 4 to its argument because the argument is y, the body is x+y,
and the function is defined in an environment where x maps to 4. So in the last line, z will be bound to
6. The binding val x = 3 is totally irrelevant: the call g 2 is evaluated by looking up g to get the closure
that was passed in and then using that closure with its environment (in which x maps to 4) with 2 for an
argument.

Why Lexical Scope

While lexical scope and higher-order functions take some getting used to, decades of experience is clear that

2



this semantics is what we want. In the next section of this lecture and all of the next lecture we will see
various widespread idioms that are powerful and rely on lexical scope.

But first we can also motivate lexical scope by showing how dynamic scope (where you just have one current
environment and use it to evaluate function bodies) leads to some fundamental problems.

First, suppose in Example 1 the body of f was changed to let val q = y+1 in fn z => q + y + z. Under
lexical scope this is fine: we can always change the name of a local variable and its uses without it affecting
anything. Under dynamic scope, now the call to g 6 will make no sense: we will try to look up q, but there
is no q in the environment at the call-site.

Second, consider again the original version of Example 1 but now change the line val x = 3 to val x = "hi".
Under lexical scope, this is again fine: that binding is never actually used. Under dynamic scope, the call to
g 6 will look-up x, get a string, and try to add it, which should not happen in a program that type-checks.

Similar issues arise with Example 2: The body of f in this example is awful: we have a local binding we
never use. Under lexical scope we can remove it, changing the body to g 2 and know that this has no effect
on the rest of the program. Under dynamic scope it would have an effect. Also, under lexical scope we know
that any use of the closure bound to h will add 4 to its argument regardless of how other functions like g

are implemented and what variable names they use. This is a key separation-of-concerns that only lexical
scope provides.

For “regular” variables in programs, lexical scope is the way to go. There are some compelling uses for
dynamic scoping for certain idioms, but few languages have special support for these (Racket does) and very
few if any modern languages have dynamic scoping as the default. But you have seen one feature that is
more like dynamic scope than lexical scope: exception handling. When an exception is raised, evaluation
has to “look up” which handle expression should be evaluated. This “look up” is done using the dynamic
call stack, with no regard for the lexical structure of the program.

Passing Closures to Iterators Like Filter

The examples above are silly, so we need to show useful programs that rely on lexical scope. The first idiom
we will show is, like last lecture, passing functions to iterators like map and filter. The functions we passed
last time did not use their environment (only their arguments and maybe local variables), but being able to
pass in closures makes the higher-order functions much more widely useful. Consider:

fun filter (f,xs) =

case xs of

[] => []

| x::xs’ => if f x then x::(filter(f,xs’)) else filter(f,xs’)

fun allGreaterThanSeven xs = filter (fn x => x > 7, xs)

fun allGreaterThan (xs,n) = filter (fn x => x > n, xs)

Here, allGreaterThanSeven is “old news” — we pass in a function that removes from the result any numbers
7 or less in a list. But it is much more likely that you want a function like allGreatherThan that takes the
“limit” as a parameter n and uses the function fn x => x > n. Notice this requires a closure and lexical
scope! When the implementation of filter calls this function, we need to look up n in the environment
where fn x => x > n was defined.

Here are two additional examples:

fun allShorterThan1 (xs,s) = filter (fn x => String.size x < String.size s, xs)

3



fun allShorterThan2 (xs,s) =

let

val i = String.size s

in

filter(fn x => String.size x < i, xs)

end

Both these functions take a list of strings xs and a string s and return a list containing only the strings in
xs that are shorter than s. And they both use closures, to look up s or i when the anonymous functions get
called. The second one is more complicated but a bit more efficient: The first one recomputes String.size s

once per element in xs (because filter calls its function argument this many times and the body evaluates
String.size s each time). The second one “precomputes” String.size s and binds it to a variable i

available to the function fn x => String.size x < i.

Fold and More Closure Examples

Beyond map and filter, a third incredibly useful higher-order function is fold, which can have several slightly
different definitions and is also known by names such as reduce and inject. Here is one common definition:

fun fold (f,acc,l) =

case l of

[] => acc

| hd::tl => fold (f, f(acc,hd), tl)

fold takes an “initial answer” acc and uses f to “combine” acc and the first element of the list, using this
as the new “initial answer” for “folding” over the rest of the list. We can use fold to take care of iterating
over a list while we provide some function that expresses how to combine elements. For example, to sum the
elements in a list lst, we can do:

fold ((fn (x,y) => x+y), 0, lst)

As with map, much of fold’s power comes from clients passing closures that can have “private fields” (in the
form of variables bindings) for keeping data they want to consult. Here are two examples. The first counts
how many elements are in some integer range. The second checks if all elements are strings shorter than
some other string’s length.

fun numberInRange (xs,lo,hi) =

fold ((fn (x,y) =>

x + (if y >= lo andalso y <= hi then 1 else 0)),

0, xs)

fun areAllShorter (xs,s) =

let

val i = String.size s

in

fold((fn (x,y) => x andalso String.size y < i), true, xs)

end

This pattern of splitting the recursive traversal (fold or map) from the data-processing done on the elements
(the closures passed in) is fundamental. In our examples, both parts are so easy we could just do the whole
thing together in a few simple lines. More generally, we may have a very complicated set of data structures
to traverse or we may have very involved data processing to do. It is good to separate these concerns so that
the programming problems can be solved separately.

4


