
CSE341: Programming Languages

Lecture 8
Lexical Scope and Function Closures

Dan Grossman
Fall 2011

Very important concept

• We know function bodies can use any bindings in scope

• But now that functions can be passed around: In scope where?

Where the function was defined
(not where it was called)

• There are lots of good reasons for this semantics
– Discussed after explaining what the semantics is

• For HW, exams, and competent programming, you must “get this”

• This semantics is called lexical scope

Fall 2011 2 CSE341: Programming Languages

Example

Demonstrates lexical scope even without higher-order functions:

Fall 2011 3 CSE341: Programming Languages

(* 1 *) val x = 1
(* 2 *) fun f y = x + y
(* 3 *) val x = 3
(* 4 *) val y = 4
(* 5 *) val z = f (x + y)

• Line 2 defines a function that, when called, evaluates body x+y
in environment where x maps to 1 and y maps to the argument

• Call on line 5:
– Looks up f to get the function defined on line 2
– Evaluates x+y in current environment, producing 7
– Calls the function, which evaluates the body in the old

environment, producing 8

Closures

How can functions be evaluated in old environments that aren’t around
anymore?

– The language implementation keeps them around as necessary

Can define the semantics of functions as follows:
• A function value has two parts

– The code (obviously)
– The environment that was current when the function was defined

• This is a “pair” but unlike ML pairs, you cannot access the pieces
• All you can do is call this “pair”
• This pair is called a function closure
• A call evaluates the code part in the environment part (extended

with the function argument)

Fall 2011 4 CSE341: Programming Languages

Example

Fall 2011 5 CSE341: Programming Languages

(* 1 *) val x = 1
(* 2 *) fun f y = x + y
(* 3 *) val x = 3
(* 4 *) val y = 4
(* 5 *) val z = f (x + y)

• Line 2 creates a closure and binds f to it:
– Code: “take y and have body x+y”
– Environment: “x maps to 1”

• (Plus whatever else is in scope, including f for recursion)

So what?

Now you know the rule. Next steps:

• (Silly) examples to demonstrate how the rule works for higher-

order functions

• Why the other natural rule, dynamic scope, is a bad idea

• Powerful idioms with higher-order functions that use this rule
– This lecture: Passing functions to iterators like filter
– Next lecture: Several more idioms

Fall 2011 6 CSE341: Programming Languages

Example: Returning a function

• Trust the rule: Evaluating line 4 binds to g to a closure:
– Code: “take z and have body x+y+z”
– Environment: “y maps to 4, x maps to 5 (shadowing), …”
– So this closure will always add 9 to its argument

• So line 6 binds 15 to z

Fall 2011 7 CSE341: Programming Languages

(* 1 *) val x = 1
(* 2 *) fun f y =
(* 2a *) let val x = y+1
(* 2b *) in fn z => x+y+z end
(* 3 *) val x = 3
(* 4 *) val g = f 4
(* 5 *) val y = 5
(* 6 *) val z = g 6

Example: Passing a function

• Trust the rule: Evaluating line 3 binds h to a closure:
– Code: “take y and have body x+y”
– Environment: “x maps to 4, f maps to a closure, …”
– So this closure will always add 4 to its argument

• So line 4 binds 6 to z
– Line 1a is as stupid and irrelevant as it should be

Fall 2011 8 CSE341: Programming Languages

(* 1 *) fun f g = (* call arg with 2 *)
(* 1a *) let val x = 3
(* 1b *) in g 2 end
(* 2 *) val x = 4
(* 3 *) fun h y = x + y
(* 4 *) val z = f h

Why lexical scope?
1. Function meaning does not depend on variable names used

Example: Can change body to use q instead of x

– Lexical scope: it can’t matter
– Dynamic scope: Depends how result is used

Example: Can remove unused variables
– Dynamic scope: But maybe some g uses it (weird)

Fall 2011 9 CSE341: Programming Languages

fun f y =
 let val x = y+1
 in fn z => x+y+z end

fun f g =
 let val x = 3
 in g 2 end

Why lexical scope?

2. Functions can be type-checked & reasoned about where
defined

Example: Dynamic scope tries to add a string and an unbound
variable to 6

Fall 2011 10 CSE341: Programming Languages

val x = 1
fun f y =
 let val x = y+1
 in fn z => x+y+z end
val x = "hi"
val g = f 4
val z = g 6

Why lexical scope?

3. Closures can easily store the data they need
– Many more examples and idioms to come

Fall 2011 11 CSE341: Programming Languages

fun greaterThanX x = fn y => y > x

fun filter (f,xs) =
 case xs of
 [] => []
 | x::xs => if f x
 then x::(filter(f,xs))
 else filter(f,xs)

fun noNegatives xs = filter(greaterThanX ~1, xs)

Does dynamic scope exist?

• Lexical scope for variables is definitely the right default
– Very common across languages

• Dynamic scope is occasionally convenient in some situations

– So some languages (e.g., Racket) have special ways to do it
– But most don’t bother

• If you squint some, exception handling is more like dynamic scope:

– raise e transfers control to the current innermost handler
– Does not have to be syntactically inside a handle expression

(and usually isn’t)

Fall 2011 12 CSE341: Programming Languages

Recomputation

These both work and rely on using variables in the environment

The first one computes String.size once per element of xs
The second one computes String.size s once per list

– Nothing new here: let-bindings are evaluated when
encountered and function bodies evaluated when called

Fall 2011 13 CSE341: Programming Languages

fun allShorterThan1 (xs,s) =
 filter(fn x => String.size x < String.size s,
 xs)

fun allShorterThan2 (xs,s) =
 let val i = String.size s
 in filter(fn x => String.size x < i, xs) end

Iterators made better

• Functions like map and filter are much more powerful thanks
to closures and lexical scope

• Function passed in can use any “private” data in its environment

• Iterator “doesn’t even know the data is there” or what type it has

Fall 2011 14 CSE341: Programming Languages

Another famous function: Fold
fold (and synonyms / close relatives reduce, inject, etc.) is
another very famous iterator over recursive structures

Accumulates an answer by repeatedly applying f to answer so far

– fold(f,acc,[x1,x2,x3,x4]) computes
f(f(f(f(acc,x1),x2),x3),x4)

Fall 2011 15 CSE341: Programming Languages

fun fold (f,acc,xs) =
 case xs of
 [] => acc
 | x::xs => fold(f, f(acc,x), xs)

val fold = fn : ('a * 'b -> 'a) * 'a * 'b list -> 'a

– This version “folds left”; another version “folds right”
– Whether the direction matters depends on f (often not)

Examples with fold
These are useful and do not use “private data”

Fall 2011 16 CSE341: Programming Languages

These are useful and do use “private data”

fun f1 xs = fold((fn (x,y) => x+y), 0, xs)
fun f2 xs = fold((fn (x,y) => x andalso y>=0),
 true, xs)

fun f3 (xs,hi,lo) =
 fold(fn (x,y) =>
 x + (if y >= lo andalso y <= hi
 then 1
 else 0)),
 0, xs)
fun f4 (g,xs) = fold(fn (x,y) => x andalso g y),
 true, xs)

Why iterators again?

• These “iterator-like” functions are not built into the language
– Just a programming pattern
– Though many languages have built-in support, which often

allows stopping early without using exceptions

• This pattern separates recursive traversal from data processing
– Can reuse same traversal for different data processing
– Can reuse same data processing for different data structures

Fall 2011 17 CSE341: Programming Languages

