
CSE341, Fall 2011, Lecture 7 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

Lectures 7, 8, and 9 will focus on first-class functions and function closures. By “first-class” we mean that
functions can be computed and passed wherever other values can in ML. As examples, we can pass them
to functions, return them from functions, put them in pairs, have them be part of the data a datatype
constructor carries, etc. Function closures refer to functions that use variables defined outside of them,
which we will start seeing next lecture. The term higher-order function just refers to a function that takes
or returns other functions.

Taking functions as arguments

The most common use of first-class functions is passing them as arguments to other functions, so we motivate
this use first.

Here is a first example of a function that takes another function:

fun n_times (f,n,x) =

if n=0

then x

else f (n_times(f,n-1,x))

We can tell the argument f is a function because the last line calls f with an argument. What n_times does
is compute f(f(...(f(x)))) where the number of calls to f is n. That is a genuinely useful helper function
to have around. For example, here are 3 different uses of it:

fun double x = x+x

val x1 = n_times(double,4,7) (* answer: 112 *)

fun increment x = x+1

val x2 = n_times(increment,4,7) (* answer: 11 *)

val x3 = n_times(tl,2,[4,8,12,16]) (* answer: [12,16] *)

Like any helper function, n_times lets us abstract the common parts of multiple computations so we can
reuse some code in different ways by passing in different arguments. The main novelty is making one of
those arguments a function, which is a powerful and flexible programming idiom. It also makes perfect sense
— we are not introducing any new language constructs here, just using ones we already know in ways you
may not have thought of.

Once we define such abstractions, we can find additional uses for them. For example, even if our program
today does not need to triple any values n times, maybe tomorrow it will, in which case we can just define
the function triple_n_times using n_times:

fun triple x = 3*x

fun triple_n_times (n,x) = n_times(triple,n,x)

Polymorphic Types

1

Let us now consider the type of n_times, which is (’a -> ’a) * int * ’a -> ’a. It might be simpler at
first to consider the type (int -> int) * int * int -> int, which is how n_times is used for x1 and x2

above: It takes 3 arguments, the first of which is itself a function that takes and returns an int. Similarly, for
x3 we use n_times as though it has type (int list -> int list) * int * int list -> int list. But
choosing either one of these types for n_times would make it less useful because only some of our example
uses would type-check. The type (’a -> ’a) * int * ’a -> ’a says the third argument and result can be
any type, but they have to be the same type, as does the argument and return type for the first argument.
When types can be any type and do not have to be the same as other types, we use different letters (’b, ’c,
etc.)

This is called parametric polymorphism, or perhaps more commonly generic types. It lets functions take
arguments of any type. It is technically a separate issue from first-class functions: there are functions that
take functions and do not have polymorphic types and there are functions with polymorphic types that do
not take functions. However, many of our examples with first-class functions will have polymorphic types.
That is a good thing because it makes our code more reusable.

It is quite essential to ML. For example, without parametric polymorphism, we would have to redefine lists
for every type of element that a list might have. Instead, we can have functions that work for any kind
of list, like length, which has type ’a list -> int even though it does not use any function arguments.
Conversely, here is a higher-order function that is not polymorphic: it has type (int->int) * int -> int:1

fun times_until_zero (f,x) =

if x = 0 then 0 else 1 + times_until_zero(f, f x)

Anonymous functions

There is no reason that a function like triple that is passed to another function like n_times needs to be
defined at top-level. As usual, it is better style to define such functions locally if they are needed only locally.
So we could write:

fun triple_n_times (n,x) =

let fun triple x = 3*x in n_times(triple,n,x) end

In fact, we could give the triple function an even smaller scope: we need it only as the first argument to
n_times, so we could have a let-expression there that evaluates to the triple function:

fun triple_n_times3 (n,x) = n_times((let fun triple y = 3*y in triple end), n, x)

Notice that in this example, which is actually poor style, we need to have the let-expression “return” triple

since, as always, a let-expression produces the result of the expression between in and end. In this case, we
simply look up triple in the environment, and the resulting function is the value that we then pass as the
first argument to n_times.

ML has a much more concise way to define functions right where you use them, as in this final, best version:

fun triple_n_times3 (n,x) = n_times((fn y => 3*y), n, x)

This code defines an anonymous function fn y => 3*y. It is a function that takes an argument y and has
body 3*y. The fn is a keyword and => (not =) is also part of the syntax. We never gave the function a name
(it’s anonymous, see?), which is convenient because we did not need one. We just wanted to pass a function
to n_times, and in the body of n_times, this function is bound to f.

1It would be better to make this function tail-recursive using an accumulator; see Lecture 6.

2

It is common to use anonymous functions as arguments to other functions. Moreover, you can put an
anonymous function anywhere you can put an expression — it simply is a value, the function itself. The
only thing you cannot do with an anonymous function is recursion, exactly because you have no name to
use for the recursive call. In such cases, you need to use a fun binding as before, and fun bindings must be
in let-expressions or at top-level.

For non-recursive functions, you could use anonymous functions with val bindings instead of a fun binding.
For example, these two bindings are exactly the same thing:

fun increment x = x + 1

val increment = fn x => x+1

They both bind increment to a value that is a function that returns its argument plus 1. So function-bindings
are almost syntactic sugar, but they support recursion, which is essential.

Unnecessary Function Wrapping

While anonymous functions are incredibly convenient, there is one poor idiom where they get used for no
good reason. Consider:

fun nth_tail_lame (n,x) = n_times((fn y => tl y), n, x)

What is fn y => tl y? It is a function that returns the list-tail of its argument. But there is al-
ready a variable bound to a function that does the exact same thing: tl! In general, there is no rea-
son to write fn x => f x when we can just use f. This is analogous to the beginner’s habit of writing
if x then true else false instead of x. Just do this:

fun nth_tail (n,x) = n_times(tl, n, x)

Maps and filters

We now consider a very useful higher-order function over lists:

fun map (f,lst) =

case lst of

[] => []

| fst::rest => (f fst)::(map(f,rest))

The map function takes a list and a function f and produces a new list by applying f to each element of the
list. Here are two example uses:

val x4 = map (increment, [4,8,12,16]) (* answer: [5,9,13,17] *)

val x5 = map (hd, [[1,2],[3,4],[5,6,7]]) (* answer: [1,3,5] *)

The type of map is illuminating: (’a -> ’b) * ’a list -> ’b list. You can pass map any kind of list
you want, but the argument type of f must be the element type of the list (they are both ’a). But the
return type of f can be a different type ’b. The resulting list is a ’b list. For x4, both ’a and ’b are
instantiated with int. For x5, ’a is int list and ’b is int.

The ML standard library provides a very similar function List.map, but it is defined in a curried form, a
topic we will discuss in an upcoming lecture.

The definition and use of map is an incredibly important idiom even though our particular example is simple.
We could have easily written a recursive function over lists of integers that incremented all the elements, but

3

instead we divided the work into two parts: The map implementer knew how to traverse a recursive data
structure, in this case a list. The map client knew what to do with the data there, in this case increment each
number. You could imagine either of these tasks — traversing a complicated piece of data or doing some
calculation for each of the pieces — being vastly more complicated and best done by different developers
without making assumptions about the other task. That’s exactly what writing map as a helper function
that takes a function lets us do.

Here is a second very useful higher-order function for lists. It takes a function of type ’a -> bool and
an ’a list and returns the ’a list containing only the elements of the input list for which the function
returns true:

fun filter (f,lst) =

case lst of

[] => []

| fst::rest => if f fst

then fst::(filter (f,rest))

else filter (f,rest)

Here is an example use that assumes the list elements are pairs with second component of type int; it returns
the list elements where the second component is even:

fun get_all_even_snd lst = filter((fn (_,v) => v mod 2 = 0), lst)

(Notice how we are using a pattern for the argument to our anonymous function.)

Returning functions

Functions can also return functions. Here is an example:

fun double_or_triple f =

if f 7

then fn x => 2*x

else fn x => 3*x

The type of double_or_triple is (int -> bool) -> (int -> int): The if-test makes the type of f clear
and as usual the two branches of the if must have the same type, in this case int->int. However, ML will
print the type as (int -> bool) -> int -> int, which is the same thing. The parentheses are unnecessary
because the -> “associates to the right”, i.e., t1 -> t2 -> t3 -> t4 is t1 -> (t2 -> (t3 -> t4)).

Not just for numbers and lists

Because ML programs tend to use lists a lot, you might forget that higher-order functions are not useful only
for lists. Some of our first examples just used integers. But higher-order functions also are great for our own
data structures that we define with datatype bindings. Here we reuse our is_even function from before to
see if all the constants in an arithmetic expression are even. We could easily reuse true_of_all_constants

for any other property we wanted to check.

datatype exp = Constant of int | Negate of exp | Add of exp * exp | Multiply of exp * exp

fun true_of_all_constants(f,e) =

case e of

Constant i => f i

| Negate e1 => true_of_all_constants(f,e1)

4

| Add(e1,e2) => true_of_all_constants(f,e1)

andalso true_of_all_constants(f,e2)

| Multiply(e1,e2) => true_of_all_constants(f,e1)

andalso true_of_all_constants(f,e2)

fun all_even e = true_of_all_constants(is_even,e)

5

