
CSE341: Programming Languages

Lecture 7
Functions Taking/Returning Functions

Dan Grossman
Fall 2011

On to first-class functions

“Functional programming” can mean a few different things:

1. Avoiding mutation in most/all cases (done and ongoing)

2. Using functions as values (the next week)

…
 Recursion?
 Mathematical definitions?
 Not OO?
 Laziness (later)?

Fall 2011 2 CSE341: Programming Languages

First-class functions

• Functions are (first-class) values: Can use them wherever we
use values
– Arguments, results, parts of tuples, bound to variables,

carried by datatype constructors or exceptions, …

• Most common use is as an argument / result of another function
– The other function is called a higher-order function
– Powerful way to factor out common functionality

• 3-ish lectures on how and why to use first-class functions

Fall 2011 3 CSE341: Programming Languages

Example
Can reuse n_times rather than defining many similar functions

– Computes f(f(…f(x))) where number of calls is n

Fall 2011 4 CSE341: Programming Languages

fun n_times (f,n,x) =
 if n=0
 then x
 else f (n_times(f,n-1,x))

fun double x = x + x
fun increment x = x + 1
val x1 = n_times(double,4,7)
val x2 = n_times(increment,4,7)
val x3 = n_times(tl,2,[4,8,12,16,20])

fun double_n_times (n,x) = n_times(double,n,x)
fun nth_tail (n,x) = n_times(tl,n,x)

Types

• val n_times : ('a -> 'a) * int * 'a -> 'a

• Two of our examples instantiated 'a with int
• One of our examples instantiated 'a with int list
• This polymorphism makes n_times more useful

• Type is inferred based on how arguments are used (later lecture)

– Describes which types must be exactly something (e.g., int) and
which can be anything but the same (e.g., 'a)

Fall 2011 5 CSE341: Programming Languages

Polymorphism and higher-order functions

• Many higher-order functions are polymorphic because they are
so reusable that some types, “can be anything”

• But some polymorphic functions are not higher-order
– Example: length : 'a list -> int

• And some higher-order functions are not polymorphic

– Example: times_til_0 : (int -> int) * int -> int

Fall 2011 6 CSE341: Programming Languages

fun times_til_0 (f,x) =
 if x=0 then 0 else 1 + times_til_0(f, f x)

* Would be better with tail-recursion

Toward anonymous functions
• Definitions unnecessarily at top-level are still poor style:

Fall 2011 7 CSE341: Programming Languages

• So this is better (but not the best):

• And this is even smaller scope
– It makes sense but looks weird (poor style; see next slide)

fun triple x = 3*x
fun triple_n_times (f,x) = n_times(triple,n,x)

fun triple_n_times (f,x) =
 let fun trip y = 3*y
 in
 n_times(trip,n,x)
 end

fun triple_n_times (f,x) =
 n_times(let fun trip y = 3*y in trip end, n, x)

Anonymous functions
• This does not work: A function binding is not an expression

Fall 2011 8 CSE341: Programming Languages

• This is the best way we were building up to: an expression form
for anonymous functions

– Like all expression forms, can appear anywhere
– Syntax:

• fn not fun
• => not =
• no function name, just an argument pattern

fun triple_n_times (f,x) =
 n_times((fun trip y = 3*y), n, x)

fun triple_n_times (f,x) =
 n_times((fn y => 3*y), n, x)

Using anonymous functions

• Most common use: Argument to a higher-order function
– Don’t need a name just to pass a function

• But: Cannot use an anonymous function for a recursive function

– Because there is no name for making recursive calls
– If not for recursion, fun bindings would be syntactic sugar

for val bindings and anonymous functions

Fall 2011 9 CSE341: Programming Languages

fun triple x = 3*x

val triple = fn y => 3*y

A style point

Compare:

With:

So don’t do this:

When you can do this:

Fall 2011 10 CSE341: Programming Languages

 n_times((fn y => tl y),3,xs)

 n_times(tl,3,xs)

 if x then true else false

 (fn x => f x)

Map

Map is, without doubt, in the higher-order function hall-of-fame
– The name is standard (for any data structure)
– You use it all the time once you know it: saves a little space,

but more importantly, communicates what you are doing
– Similar predefined function: List.map

• But it uses currying (lecture 9)
Fall 2011 11 CSE341: Programming Languages

fun map (f,xs) =
 case xs of
 [] => []
 | x::xs’ => (f x)::(map(f,xs’))

 map : ('a -> 'b) * 'a list -> 'b list

Filter

Filter is also in the hall-of-fame
– So use it whenever your computation is a filter
– Similar predefined function: List.filter

• But it uses currying (lecture 9)

Fall 2011 12 CSE341: Programming Languages

fun filter (f,xs) =
 case xs of
 [] => []
 | x::xs => if f x
 then x::(filter(f,rest))
 else filter(f,rest)

filter : ('a -> bool) * 'a list -> 'a list

Returning functions

• Remember: Functions are first-class values
– For example, can return them from functions

• Silly example:

 Has type (int -> bool) -> (int -> int)

 But the REPL prints (int -> bool) -> int -> int
 because it never prints unnecessary parentheses and
 t1 -> t2 -> t3 -> t4 means t1->(t2->(t3->t4))

 Fall 2011 13 CSE341: Programming Languages

fun double_or_triple f =
 if f 7
 then fn x => 2*x
 else fn x => 3*x

Other data structures

• Higher-order functions are not just for numbers and lists

• They work great for common recursive traversals over your own
data structures (datatype bindings) too
– Example of a higher-order predicate:

Are all constants in an arithmetic expression even
numbers?

Use a more general function of type
 (int -> bool) * exp -> bool

And call it with (fn x => x mod 2 = 0)

Fall 2011 14 CSE341: Programming Languages

