
CSE341: Programming Languages

Lecture 6

Tail Recursion, Accumulators, Exceptions

Dan Grossman

Fall 2011

Two unrelated topics

1. Tail recursion

2. Exceptions

Fall 2011 2 CSE341: Programming Languages

Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is )

• Often much easier than a loop

– When processing a tree (e.g., evaluate an arithmetic

expression)

– Examples like appending two lists

– Avoids mutation even for local variables

• Now:

– How to reason about efficiency of recursion

– The importance of tail recursion

– Using an accumulator to achieve tail recursion

– [No new language features here]

Fall 2011 3 CSE341: Programming Languages

Call-stacks

While a program runs, there is a call stack of function calls that

have started but not yet returned

– Calling a function f pushes an instance of f on the stack

– When a call to f to finishes, it is popped from the stack

These stack-frames store information like the value of local

variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same

function

Fall 2011 4 CSE341: Programming Languages

Example

Fall 2011 5 CSE341: Programming Languages

fun fact n = if n=0 then 1 else n*fact(n-1)

val x = fact 3

fact 3: 3*_ fact 3

fact 2

fact 3: 3*_ fact 3: 3*_

fact 2: 2*_

fact 1

fact 2: 2*_

fact 1: 1*_

fact 0

fact 3: 3*_

fact 2: 2*_

fact 1: 1*_

fact 0: 1

fact 3: 3*_

fact 2: 2*_

fact 1: 1*1

fact 3: 3*_

fact 2: 2*1

fact 3: 3*2

Example Revised

fun fact n =

 let fun aux(n,acc) =

 if n=0

 then acc

 else aux(n-1,acc*n)

 in

 aux(n,1)

 end

val x = fact 3

Still recursive, more complicated, but the result of recursive

calls is the result for the caller (no remaining multiplication)

The call-stacks

Fall 2011 7 CSE341: Programming Languages

fact 3: _ fact 3

aux(3,1)

fact 3: _

aux(3,1):_

aux(2,3)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):_

aux(0,6)

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):_

aux(0,6):6

fact 3: _

aux(3,1):_

aux(2,3):_

aux(1,6):6
Etc…

fact 3: _

aux(3,1):_

aux(2,3):6

An optimization

It is unnecessary to keep around a stack-frame just so it can get a

callee’s result and return it without any further evaluation

ML recognizes these tail calls in the compiler and treats them

differently:

– Pop the caller before the call, allowing callee to reuse the

same stack space

– (Along with other optimizations,) as efficient as a loop

(Reasonable to assume all functional-language implementations do

tail-call optimization)

Fall 2011 8 CSE341: Programming Languages

What really happens

Fall 2011 9 CSE341: Programming Languages

fun fact n =

 let fun aux(n,acc) =

 if n=0

 then acc

 else aux(n-1,acc*n)

 in

 aux(n,1)

 end

val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)

Moral

• Where reasonably elegant, feasible, and important, rewriting

functions to be tail-recursive can be much more efficient

– Tail-recursive: recursive calls are tail-calls

• There is also a methodology to guide this transformation:

– Create a helper function that takes an accumulator

– Old base case becomes initial accumulator

– New base case becomes final accumulator

Fall 2011 10 CSE341: Programming Languages

Another example

Fall 2011 11 CSE341: Programming Languages

fun sum xs =

 case xs of

 [] => 0

 | x::xs’ => x + sum xs’

 fun sum xs =

 let fun aux(xs,acc) =

 case xs of

 [] => acc

 | x::xs’ => aux(xs’,x+acc)

 in

 aux(xs,0)

 end

And another

Fall 2011 12 CSE341: Programming Languages

fun rev xs =

 case xs of

 [] => []

 | x::xs’ => (rev xs) @ [x]

 fun rev xs =

 let fun aux(xs,acc) =

 case xs of

 [] => acc

 | x::xs’ => aux(xs’,x::acc)

 in

 aux(xs,[])

 end

Actually much better

• For fact and sum, tail-recursion is faster but both ways linear time

• The non-tail recursive rev is quadratic because each recursive call

uses append, which must traverse the first list

– And 1+2+…+(length-1) is almost length*length/2 (cf. CSE332)

– Moral: beware list-append, especially within outer recursion

• Cons is constant-time (and fast), so the accumulator version rocks

Fall 2011 13 CSE341: Programming Languages

fun rev xs =

 case xs of

 [] => []

 | x::xs’ => (rev xs) @ [x]

Always tail-recursive?

There are certainly cases where recursive functions cannot be

evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go

– You could get one recursive call to be a tail call, but rarely

worth the complication

[See max_constant example for arithmetic expressions]

Fall 2011 14 CSE341: Programming Languages

Precise definition

If the result of f x is the “immediate result” for the enclosing function

body, then f x is a tail call

Can define this notion more precisely…

• A tail call is a function call in tail position

• If an expression is not in tail position, then no subexpressions are

• In fun f p = e, the body e is in tail position

• If if e1 then e2 else e3 is in tail position, then e2 and e3

are in tail position (but e1 is not). (Similar for case-expressions)

• If let b1 … bn in e end is in tail position, then e is in tail

position (but no binding expressions are)

• Function-call arguments are not in tail position

• …

Fall 2011 15 CSE341: Programming Languages

Exceptions

An exception binding introduces a new kind of exception

The raise primitive raises (a.k.a. throws) an exception

A handle expression can handle (a.k.a. catch) an exception

– If doesn’t match, exception continues to propagate

Fall 2011 16 CSE341: Programming Languages

exception MyFirstException

exception MySecondException of int * int

raise MyFirstException

raise MySecondException(7,9)

SOME(f x) handle MyFirstException => NONE

SOME(f x) handle MySecondException(x,_) => SOME x

Actually…

Exceptions are a lot like datatype constructors…

• Declaring an exception makes a constructor for type exn

• Can pass values of exn anywhere (e.g., function arguments)

– Not too common to do this but can be useful

• Handle can have multiple branches with patterns for type exn

Fall 2011 17 CSE341: Programming Languages

