CSE341: Programming Languages

Lecture 5
Pattern-Matching

Dan Grossman
Fall 2011

Review

Datatype bindings and pattern-matching so far:

datatype t = C1 of tl | C2 of t2 | .. | Cn of tn

Adds type t and constructors Ci of type ti->t
- Ci v isavalue

case e of pl => el | p2 => e2 | .. | pn => en

* Evaluate e to avalue

* Ifpi is the first pattern to match the value, then result is evaluation of
ei in environment extended by the match

Pattern Ci (x1,..,xn) matches value Ci (v1,..,vn) and extends
the environment with x1 tovl ... xn to vn

» This lecture: many more kinds of patterns and ways to use them

Fall 2011 CSE341: Programming Languages 2

Recursive datatypes

Datatype bindings can describe recursive structures
— Arithmetic expressions from last lecture
— Linked lists, for example:

datatype my int list = Empty
| Cons of int * my int list

val x = Cons(4,Cons (23,Cons (2008 ,Empty)))
fun append my list (xs,ys) =
case xs of

Empty => ys
| Cons(x,xs’) => Cons(x, append my list(xs’,kys)

Fall 2011 CSE341: Programming Languages 3

Options are datatypes

Options are just a predefined datatyping binding
- NONE and SOME are constructors, not just functions
— So use pattern-matching not isSome and valof

fun inc_or_ zero intoption =
case intoption of
NONE => 0
| SOME i => i+l

Fall 2011 CSE341: Programming Languages 4

Lists are datatypes

Don’t use hd, t1, or null either
- [1and :: are constructors too
— (strange syntax, particularly infix)

fun sum list intlist =
case intlist of
[1 =>0
| head::tail => head + sum list tail

fun append (xs,ys) =
case xs of
[1 =>ys
| x::xs’ => x :: append(xs’,ys)

Fall 2011 CSE341: Programming Languages 5

Why pattern-matching

» Pattern-matching is better for options and lists for the same
reasons as for all datatypes

— No missing cases, no exceptions for wrong variant, etc.
* We just learned the other way first for pedagogy
* Sowhyarenull and tl predefined then?

— For passing as arguments to other functions (next week)

— Because sometimes they’re really convenient
— But not a big deal: could define them yourself with case

Fall 2011 CSE341: Programming Languages 6

Each-of types

So far have used pattern-matching for one of types because we
needed a way to access the values

Pattern matching also works for records and tuples:
— The pattern (x1,..,xn)
matches the tuple value (v1,..,vn)
— The pattern {£1=x1, .., fn=xn}
matches the record value {f1=v1l, .., fn=vn}
(and fields can be reordered)

Fall 2011 CSE341: Programming Languages 7

Example

This is poor style, but based on what | told you so far, the only way
to use patterns

— Works but poor style to have one-branch cases

fun sum triple triple =
case triple of
(x, v, z2) =>x+y + z

fun sum stooges stooges =

case stooges of
{larry=x, moe=y, curly=z} => x + y + z

Fall 2011 CSE341: Programming Languages 8

Val-binding patterns

* New feature: A val-binding can use a pattern, not just a variable

— (Turns out variables are just one kind of pattern, so we just
told you a half-truth in lecture 1)

val p = e

» This is great for getting (all) pieces out of an each-of type
— Can also get only parts out (see the book or ask later)

» Usually poor style to put a constructor pattern in a val-binding

— This tests for the one variant and raises an exception if a
different one is there (like hd, t1, and valof£)

Fall 2011 CSE341: Programming Languages 9

Better example

This is reasonable style
— Though we will improve it one more time next
— Semantically identical to one-branch case expressions

fun sum triple triple =
let val (x, y, z) = triple
in
XxX+y+ z
end

fun sum_stooges stooges =
let val {larry=x, moe=y, curly=z} = stooges
in
x+y + z
end

Fall 2011 CSE341: Programming Languages 10

A new way to go

* For homework 2:
— Do not use the # character
— You won’t need to write down any explicit types

¢ These are related

— Type-checker can use patterns to figure out the types
— With just #£oo it can’t “guess what other fields”

Fall 2011 CSE341: Programming Languages 11

Function-argument patterns

A function argument can also be a pattern
— Match against the argument in a function call

fun £ p = e

Examples:

fun sum triple (x, y, z) =
x+y + z

fun sum stooges {larry=x, moe=y, curly=z} =
x+y + z

Fall 2011 CSE341: Programming Languages 12

Hmm
A function that takes one triple of type int*int*int and returns
an int that is their sum:

fun sum triple (x, y, z) =
Xty + z

A function that takes three int arguments and returns
an int that is their sum

fun sum triple (x, y, z) =
XxX+y + z

See the difference? (Me neither.) ©

Fall 2011 CSE341: Programming Languages 13

The truth about functions

* In ML, every function takes exactly one argument (*)

* What we call multi-argument functions are just functions taking
one tuple argument, implemented with a tuple pattern in the
function binding

— Elegant and flexible language design

» Enables cute and useful things you can’t do in Java, e.g.,

fun rotate left (x, y, z) = (y, z, X)
fun rotate_right t = rotate left(rotate left t)

* “Zero arguments” is the unit pattern () matching the unit value ()

Fall 2011 CSE341: Programming Languages 14

One-of types in function bindings

As a matter of taste, | personally have never loved this syntax, but
others love it and you’re welcome to use it:

fun £ pl = el Example:
| £p2 =e2 fun eval (Constant i) = i
. | eval (Add(el,e2)) =
| £ pn =en (eval el) + (eval e2)

| eval (Negate el) =
~ (eval el)

As a matter of semantics, it's syntactic sugar for:

fun £ x = el
case x of

More sugar

By the way, conditionals are just a predefined datatype and
if-expressions are just syntactic sugar for case expressions
datatype bool = true | false

if el then e2 else e3

case el of true => e2 | false => e3

pl => el
| p2 => e2
Fall 2011 CSE341: Programming Languages 15 Fall 2011 CSE341: Programming Languages 16
Nested patterns Useful example: zip/unzip 3 lists

* We can nest patterns as deep as we want
— Just like we can nest expressions as deep as we want
— Often avoids hard-to-read, wordy nested case expressions

« So the full meaning of pattern-matching is to compare a pattern
against a value for the “same shape” and bind variables to the
“right parts”

— More precise recursive definition coming after examples

« Examples:
— Pattern a: :b: :c: :d matches all lists with >= 3 elements
— Patterna::b::c::[] matches all lists with 3 elements
— Pattern ((a,b), (c,d)) : :e matches all non-empty lists of
pairs of pairs

Fall 2011 CSE341: Programming Languages 17

fun zip3 lists =
case lists of
(I1,101,01) => [1
| (hdl::tll,hd2::t12,hd3::tl13) =>
(hdl,hd2,hd3) : : zip3 (t11,tl12,tl13)
| _ => raise ListLengthMismatch

fun unzip3 triples =
case triples of
[1 => (I1,01,[1)
| (a,b,c)::t1l =>
let val (11, 12, 13) = unzip3 tl
in
(a::11,b::12,c::13)

end

More examples in the code for the lecture

Fall 2011 CSE341: Programming Languages 18

(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v
and decides (1) does it match and (2) if so, what variable bindings
are introduced.

Since patterns can nest, the definition is elegantly recursive, with a
separate rule for each kind of pattern. Some of the rules:

» |If pis a variable x, the match succeeds and x is bound to v

« If pis _, the match succeeds and no bindings are introduced

e Ifpis(p1,...,pn) and vis (v1,...,vn), the match succeeds if and
only if p7 matches v17, ..., pn matches vn. The bindings are the
union of all bindings from the submatches

e Ifpis C p1, the match succeeds if vis C v1 (i.e., the same
constructor) and p7 matches v1. The bindings are the bindings
from the submatch.

e ... (there are several other similar forms of patterns)

Fall 2011 CSE341: Programming Languages 19

