
CSE341: Programming Languages

Lecture 5
Pattern-Matching

Dan Grossman
Fall 2011

Review
Datatype bindings and pattern-matching so far:

Adds type t and constructors Ci of type ti->t

– Ci v is a value

• Evaluate e to a value
• If pi is the first pattern to match the value, then result is evaluation of

ei in environment extended by the match
• Pattern Ci(x1,…,xn) matches value Ci(v1,…,vn) and extends

the environment with x1 to v1 … xn to vn
• This lecture: many more kinds of patterns and ways to use them

Fall 2011 2 CSE341: Programming Languages

datatype t = C1 of t1 | C2 of t2 | … | Cn of tn

case e of p1 => e1 | p2 => e2 | … | pn => en

Recursive datatypes

Datatype bindings can describe recursive structures
– Arithmetic expressions from last lecture
– Linked lists, for example:

Fall 2011 3 CSE341: Programming Languages

datatype my_int_list = Empty
 | Cons of int * my_int_list

val x = Cons(4,Cons(23,Cons(2008,Empty)))

fun append_my_list (xs,ys) =
 case xs of
 Empty => ys
 | Cons(x,xs’) => Cons(x, append_my_list(xs’,ys)

Options are datatypes

Options are just a predefined datatyping binding
– NONE and SOME are constructors, not just functions
– So use pattern-matching not isSome and valOf

Fall 2011 4 CSE341: Programming Languages

fun inc_or_zero intoption =
 case intoption of
 NONE => 0
 | SOME i => i+1

Lists are datatypes

Don’t use hd, tl, or null either
– [] and :: are constructors too
– (strange syntax, particularly infix)

Fall 2011 5 CSE341: Programming Languages

fun sum_list intlist =
 case intlist of
 [] => 0
 | head::tail => head + sum_list tail

fun append (xs,ys) =
 case xs of
 [] => ys
 | x::xs’ => x :: append(xs’,ys)

Why pattern-matching

• Pattern-matching is better for options and lists for the same
reasons as for all datatypes
– No missing cases, no exceptions for wrong variant, etc.

• We just learned the other way first for pedagogy

• So why are null and tl predefined then?

– For passing as arguments to other functions (next week)
– Because sometimes they’re really convenient
– But not a big deal: could define them yourself with case

Fall 2011 6 CSE341: Programming Languages

Each-of types

So far have used pattern-matching for one of types because we
needed a way to access the values

Pattern matching also works for records and tuples:

– The pattern (x1,…,xn)
 matches the tuple value (v1,…,vn)
– The pattern {f1=x1, …, fn=xn}
 matches the record value {f1=v1, …, fn=vn}
 (and fields can be reordered)

Fall 2011 7 CSE341: Programming Languages

Example

This is poor style, but based on what I told you so far, the only way
to use patterns

– Works but poor style to have one-branch cases

Fall 2011 8 CSE341: Programming Languages

fun sum_triple triple =
 case triple of
 (x, y, z) => x + y + z

fun sum_stooges stooges =
 case stooges of
 {larry=x, moe=y, curly=z} => x + y + z

Val-binding patterns

• New feature: A val-binding can use a pattern, not just a variable
– (Turns out variables are just one kind of pattern, so we just

told you a half-truth in lecture 1)

• This is great for getting (all) pieces out of an each-of type
– Can also get only parts out (see the book or ask later)

• Usually poor style to put a constructor pattern in a val-binding

– This tests for the one variant and raises an exception if a
different one is there (like hd, tl, and valOf)

Fall 2011 9 CSE341: Programming Languages

val p = e

Better example

This is reasonable style
– Though we will improve it one more time next
– Semantically identical to one-branch case expressions

Fall 2011 10 CSE341: Programming Languages

fun sum_triple triple =
 let val (x, y, z) = triple
 in
 x + y + z
 end

fun sum_stooges stooges =
 let val {larry=x, moe=y, curly=z} = stooges
 in
 x + y + z
 end

A new way to go

• For homework 2:
– Do not use the # character
– You won’t need to write down any explicit types

• These are related

– Type-checker can use patterns to figure out the types
– With just #foo it can’t “guess what other fields”

Fall 2011 11 CSE341: Programming Languages

Function-argument patterns

A function argument can also be a pattern
– Match against the argument in a function call

Examples:

Fall 2011 12 CSE341: Programming Languages

fun f p = e

fun sum_triple (x, y, z) =
 x + y + z

fun sum_stooges {larry=x, moe=y, curly=z} =
 x + y + z

Hmm

A function that takes one triple of type int*int*int and returns
an int that is their sum:

Fall 2011 13 CSE341: Programming Languages

A function that takes three int arguments and returns
an int that is their sum

fun sum_triple (x, y, z) =
 x + y + z

fun sum_triple (x, y, z) =
 x + y + z

See the difference? (Me neither.) �

The truth about functions
• In ML, every function takes exactly one argument (*)

• What we call multi-argument functions are just functions taking

one tuple argument, implemented with a tuple pattern in the
function binding
– Elegant and flexible language design

• Enables cute and useful things you can’t do in Java, e.g.,

* “Zero arguments” is the unit pattern () matching the unit value ()
Fall 2011 14 CSE341: Programming Languages

fun rotate_left (x, y, z) = (y, z, x)
fun rotate_right t = rotate_left(rotate_left t)

One-of types in function bindings

As a matter of taste, I personally have never loved this syntax, but
others love it and you’re welcome to use it:
 Example:

As a matter of semantics, it’s syntactic sugar for:

Fall 2011 15 CSE341: Programming Languages

fun f p1 = e1
 | f p2 = e2
 …
 | f pn = en

fun eval (Constant i) = i
 | eval (Add(e1,e2)) =
 (eval e1) + (eval e2)
 | eval (Negate e1) =
 ~ (eval e1)

fun f x = e1
 case x of
 p1 => e1
 | p2 => e2
 …

More sugar

By the way, conditionals are just a predefined datatype and
if-expressions are just syntactic sugar for case expressions

Fall 2011 16 CSE341: Programming Languages

datatype bool = true | false

if e1 then e2 else e3

case e1 of true => e2 | false => e3

Nested patterns

• We can nest patterns as deep as we want
– Just like we can nest expressions as deep as we want
– Often avoids hard-to-read, wordy nested case expressions

• So the full meaning of pattern-matching is to compare a pattern
against a value for the “same shape” and bind variables to the
“right parts”
– More precise recursive definition coming after examples

• Examples:
– Pattern a::b::c::d matches all lists with >= 3 elements
– Pattern a::b::c::[] matches all lists with 3 elements
– Pattern ((a,b),(c,d))::e matches all non-empty lists of

pairs of pairs

Fall 2011 17 CSE341: Programming Languages

Useful example: zip/unzip 3 lists

Fall 2011 18 CSE341: Programming Languages

fun zip3 lists =
 case lists of
 ([],[],[]) => []
 | (hd1::tl1,hd2::tl2,hd3::tl3) =>
 (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
 | _ => raise ListLengthMismatch

fun unzip3 triples =
 case triples of
 [] => ([],[],[])
 | (a,b,c)::tl =>
 let val (l1, l2, l3) = unzip3 tl
 in
 (a::l1,b::l2,c::l3)
 end

 More examples in the code for the lecture

(Most of) the full definition
The semantics for pattern-matching takes a pattern p and a value v
and decides (1) does it match and (2) if so, what variable bindings
are introduced.

Since patterns can nest, the definition is elegantly recursive, with a
separate rule for each kind of pattern. Some of the rules:
• If p is a variable x, the match succeeds and x is bound to v
• If p is _, the match succeeds and no bindings are introduced
• If p is (p1,…,pn) and v is (v1,…,vn), the match succeeds if and

only if p1 matches v1, …, pn matches vn. The bindings are the
union of all bindings from the submatches

• If p is C p1, the match succeeds if v is C v1 (i.e., the same
constructor) and p1 matches v1. The bindings are the bindings
from the submatch.

• … (there are several other similar forms of patterns)
 Fall 2011 19 CSE341: Programming Languages

