
CSE341, Fall 2011, Lecture 25 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

Types for Objects (in the Next Lecture)

We previously studied static types for functional programs, in particular ML’s type system. ML uses its
type system to prevent errors like treating a number as a function. A key source of expressiveness in ML’s
type system (not rejecting too many programs that do nothing wrong and programmers are likely to write)
is parametric polymorphism, also known as generics.

So we should also study static types for object-oriented programs, such as those found in Java. If everything
is an object (which is less true in Java than in Ruby), then the main thing we would want our type system
to prevent is “method missing” errors, i.e., sending a message to an object that has no method for that
message. If objects have fields accessible from outside the object (e.g., in Java), then we also want to prevent
“field missing” errors. There are other possible errors as well, like calling a method with the wrong number
of arguments.

While languages like Java and C# have generics these days, the source of type-system expressiveness most
fundamental to object-oriented style is subtype polymorphism, also known as subtyping. ML does not have
subtyping, though this decision is really one of language design (it would complicate type inference, for
example).

Our plan for this lecture and the next one is to:

• Study subtyping

• Compare subtyping and generics, determining which idioms are best supported by each

• Combine subtyping and generics, showing that the result is even more useful than the sum of the two
techniques

Subtyping for Records and Functions

It would be natural to study subtyping using Java since it is a well-known object-oriented language with
a type system that has subtyping. But it is also fairly complicated, using classes and interfaces for types
that describe objects with methods, overriding, static overloading, etc. While these features have pluses and
minuses, they can complicate the fundamental ideas that underlie how subtyping should work.

So this lecture studies subtyping using only records (like in ML, things with named fields holding contents —
basically objects with public fields, no methods, and no class names) and functions (like in ML or Racket).
This will let us see how subtyping should — and should not — work, so that then the next lecture can then
apply the results to the more complicated setting of a class-based object-oriented language.

This approach has the disadvantage that we cannot use any of the language we have studied: ML does not
have subtyping and record fields are immutable, Racket and Ruby are dynamically typed, and Java is too
complicated for our starting point. So we are going to make up a language with just records, functions,
variables, numbers, strings, etc. and explain the meaning of expressions and types as we go.

A Made-Up Language of Records

To study the basic ideas behind subtyping, we will use records with mutable fields, as well as functions and
other expressions. Our syntax will be a mix of ML and Java that keeps examples short and, hopefully, clear.
For records, we will have expressions for making records, getting a field, and setting a field as follows:

1



• In the expression {f1=e1, f2=e2, ..., fn=en}, each fi is a field name and each ei is an ex-
pression. The semantics is to evaluate each ei to a value vi and the result is the record value
{f1=v1, f2=v2, ..., fn=vn}. So a record value is just a collection of fields, where each field has a
name and a contents.

• For the expression e.f, we evaluate e to a value v. If v is a record with an f field, then the result is
the contents of the f field. Our type system will ensure v has an f field.

• For the expression e1.f = e2, we evaluate e1 and e2 to values v1 and v2. If v1 is a record with an
f field, then we update the f field to have v2 for its contents. Our type system will ensure v1 has an
f field. Like in Java, we will choose to have the result of e1.f = e2 be v2, though usually we do not
use the result of a field-update.

Now we need a type system, with a form of types for records and typing rules for each of our expressions.
Like in ML, let’s write record types as {f1:t1, f2:t2, ..., fn:tn}. For example, {x : real, y : real}
would describe records with two fields named x and y that hold contents of type real. And
{foo: {x : real, y : real}, bar : string, baz : string} would describe a record with three fields
where the foo field holds a (nested) record of type {x : real, y : real}. We then type-check expressions
as follows:

• If e1 has type t1, e2 has type t2, ..., en has type tn, then {f1=e1, f2=e2, ..., fn=en} has type
{f1:t1, f2:t2, ..., fn:tn}.

• If e has a record type containing f : t, then e.f has type t (else e.f does not type-check).

• If e1 has a record type containing f : t and e2 has type t, then e1.f = e2 has type t (else e1.f = e2
does not type-check).

Assuming the “regular” typing rules for other expressions like variables, functions, arithmetic, and function
calls, an example like this will type-check as we would expect:

fun distToOrigin (p:{x:real,y:real}) =
Math.sqrt(p.x*p.x + p.y*p.y)

val pythag : {x:real,y:real} = {x=3.0, y=4.0}
val five : real = distToOrigin(pythag)

In particular, the function distToOrigin has type {x : real, y : real} -> real, where we write func-
tion types with the same syntax as in ML.

This type system does what it is intended to do: No program that type-checks would, when evaluated, try
to look up a field in a record that does not have that field.

Now Add Subtyping

With our typing rules so far, this program would not type-check:

fun distToOrigin (p:{x:real,y:real}) =
Math.sqrt(p.x*p.x + p.y*p.y)

val c : {x:real,y:real,color:string} = {x=3.0, y=4.0, color="green"}
val five : real = distToOrigin(c)

In the call distToOrigin(c), the type of the argument is {x:real,y:real,color:string} and the type
the function expects is {x:real,y:real}, breaking the typing rule that functions must be called with the

2



type of argument they expect. Yet the program above is safe: running it would not lead to accessing a field
that does not exist.

A natural idea is to make our type system more lenient as follows: If some expression has a record type
{f1:t1, ..., fn:tn}, then let the expression also have a type where some of the fields are removed. Then
our example will type-check: Since the expression c has type {x:real,y:real,color:string}, it can also
have type {x:real,y:real}, which allows the call to type-check. Notice we could also use c as an argument
to a function of type {color:string}->int, for example.

Letting an expression that has one type also have another type that has less information is the idea of
subtyping. (It may seem backwards that the subtype has more information, but that is how it works. A
less-backwards way of thinking about it is that there are “fewer” values of the subtype than of the supertype
because values of the subtype have more obligations, e.g., having more fields.)

We will now add subtyping to our made-up language, in a way that will not require us to change any of our
existing typing rules. For example, we will leave the function-call rule the same, still requiring that the type
of the actual argument equal the type of the function parameter in the function definition. To do this, we
will add two things to our type system:

• The idea of one type being a subtype of another: We will write t1 <: t2 to mean t1 is a subtype of
t2.

• One and only new typing rule: If e has type t1 and t1 <: t2, then e (also) has type t.

So now we just need to give rules for t1 <: t2, i.e., when is one type a subtype of another.

Subtyping is Not a Matter of Opinion

A common misconception is that if we are defining our own language, then we can make the typing and
subtyping rules whatever we want. That is only true if we forget that our type system is allegedly preventing
something from happening when programs run. If our goal is (still) to prevent field-missing errors, then we
cannot add any subtyping rules that would cause us to stop meeting our goal.

For subtyping, the key guiding principle is substitutability : If we allow t1 <: t2, then any value of type t1
must be able to be used in every way a t2 can be. For records, that means t1 should have all the fields that
t2 has and with the same types.

Some Good Subtyping Rules

Without further ado, we can now give four rules that we can add to our language to accept more programs
without breaking the type system. The first two are specific to records and the next two, while perhaps
seeming unnecessary, do no harm and are common in any language with subtyping because they combine
well with other rules:

• “Width” subtyping: A supertype can have a subset of fields with the same types, i.e., a subtype can
have “extra” fields

• “Permutation” subtyping: A supertype can have the same set of fields with the same types in a different
order.

• Transitivity: If t1 <: t2 and t2 <: t3, then t1 <: t3.

• Reflexivity: Every type is a subtype of itself: t <: t.

Notice that width subtyping lets us forget fields, permutation subtyping lets us reorder fields (e.g., so we can
pass a {x:real,y:real} in place of a {y:real,x:real}) and transitivity with those rules lets us do both
(e.g., so we can pass a {x:real,foo:string,y:real} in place of a {y:real,x:real}).

3



Depth Subtyping: A Bad Idea With Mutation

Our subtyping rules so far let us drop fields or reorder them, but there is no way for a supertype to have a
field with a different type than in the subtype. For example, consider this example, which passes a “sphere”
to a function expecting a “circle.” Notice that circles and spheres have a center field that itself holds a
record.

fun circleY (c:{center:{x:real,y:real}, r:real}) =
c.center.y

val sphere:{center:{x:real,y:real,z:real}, r:real}) = {center={x=3.0,y=4.0,z=0.0}, r=1.0}
val _ = circleY(sphere)

The type of circleY is {center:{x:real,y:real}, r:real}->real and the type of sphere is
{center:{x:real,y:real,z:real}, r:real}, so the call circleY(sphere) can type-check only if

{center:{x:real,y:real,z:real}, r:real} <: {center:{x:real,y:real}, r:real}

This subtyping does not hold with our rules so far: We can drop the center field, drop the r field, or reorder
those fields, but we cannot “reach into a field type to do subtyping.”

Since we might like the program above to type-check since evaluating it does not nothing wrong, perhaps
we should add another subtyping rule to handle this situation. The natural rule is “depth” subtyping for
records:

• “Depth” subtyping: If ta <: tb, then {f1:t1,...,f:ta,...,fn:tn} <: {f1:t1,...,f:tb,...,fn:tn}.

This rule lets us use width subtyping on the field center to show

{center:{x:real,y:real,z:real}, r:real} <: {center:{x:real,y:real}, r:real}

so the program above now type-checks.

Unfortunately, this rule breaks our type system, allowing programs that we do not want to allow to type-
check! This may not be intuitive and programmers make this sort of mistake often — thinking depth
subtyping should be allowed. Here is an example:

fun setToOrigin (c:{center:{x:real,y:real}, r:real})=
c.center = {x=0.0, y=0.0}

val sphere:{center:{x:real,y:real,z:real}, r:real}) = {center={x=3.0,y=4.0,z=0.0}, r=1.0}
val _ = setToOrigin(sphere)
val _ = sphere.center.z

This program type-checks in much the same way: The call setToOrigin(sphere) has an argument of type
{center:{x:real,y:real,z:real}, r:real} and uses it as a {center:{x:real,y:real}, r:real}. But
what happens when we run this program? setToOrigin mutates its argument so the center field holds a
record with no z field! So the last line, sphere.center.z will not work: it tries to read a field that does not
exist.

The moral of the story is simple if often forgotten: In a language with records (or objects) with getters and
setters for fields, depth subtyping is unsound — you cannot have a different type for a field in the subtype
and the supertype.

4



Note, however, that if a field is not settable (i.e., it is immutable), then the depth subtyping rule is sound
and, like we saw with circleY, useful. So this is yet another example of how not having mutation makes
programming easier. In this case, it allows more subtyping, which lets us reuse code more.

Another way to look at the issue is that given the three features of (1) setting a field, (2) letting depth
subtyping change the type of a field, and (3) having a type system actually prevent field-missing errors, you
can have any two of the three.

The Problem With Java/C# Array Subtyping

Now that we understand depth subtyping is unsound if record fields are mutable, we can question how Java
and C# treat subtyping for arrays. For the purpose of subtyping, arrays are very much like records, just
with field names that are numbers and all fields having the same type. (Since e1[e2] computes what index
to access and the type system does not restrict what index might be the result, we need all fields to have the
same type so that the type system knows the type of the result.) So it should very much surprise us that
this code type-checks in Java:

class Point { ... } // has fields double x, y
class ColorPoint extends Point { ... } // adds field String color
...
void m1(Point[] pt_arr) {
pt_arr[0] = new Point(3,4);

}
String m2(int x) {
ColorPoint[] cpt_arr = new ColorPoint[x];
for(int i=0; i < x; i++)

cpt_arr[i] = new ColorPoint(0,0,"green");
m1(cpt_arr);
return cpt_arr[0].color;

}

The call m1(cpt_arr) uses subtyping with ColorPoint[] <: Point[], which is essentially depth subtyping
even though array indices are mutable. As a result, it appears that cpt_arr[0].color will read the color
field of an object that does not have such a field.

What actually happens in Java and C# is the assignment pt_arr[0] = new Point(3,4); will raise an
exception if pt_arr is actually an array of ColorPoint. In Java, this is an ArrayStoreException. The
advantage of having the store raise an exception is that no other expressions, such as array reads or object-
field reads, need run-time checks. The invariant is that an object of type ColorPoint[] always holds objects
that have type ColorPoint or a subtype, not a supertype like Point. Since Java allows depth subtyping on
arrays, it cannot maintain this invariant statically. Instead, it has a run-time check on all array assignments,
using the “actual” type of array elements and the “actual” class of the value being assigned. So even though
in the type system pt_arr[0] and new Point(3,4) both have type Point, this assignment can fail at
run-time.

As usual, having run-time checks means the type system is preventing fewer errors, requiring more care
and testing, plus the run-time cost of performing these checks on array updates. So why were Java and
C# designed this way? It seemed important for flexibility before these languages had generics so that, for
example, if you wrote a method to sort an array of Point objects, you could use your method to sort an
array of ColorPoint objects. Allowing this makes the type system simpler and less “in your way” at the
expense of statically checking less. Better solutions would be to use generics in combination with subtyping
(see bounded polymorphism in the next lecture) or to have support for indicating that a method will not
update array elements, in which case depth subtyping is sound.

5



null in Java/C#

While we are on the subject of pointing out places where Java/C# choose dynamic checking over the
“natural” typing rules, the far more ubiquitous issue is how the constant null is handled. Since this value
has no fields or methods (in fact, unlike nil in Ruby, it is not even an object), its type should naturally
reflect that it cannot be used as the receiver for a method or for getting/setting a field. Instead, Java and
C# allow null to have any object type, as though it defines every method and has every field. From a static
checking perspective, this is exactly backwards. As a result, the language definition has to indicate that
every field access and method call includes a run-time check for null, leading to the NullPointerException
errors in Java you have surely encountered.

So why were Java and C# designed this way? Because there are situations where it is very convenient
to have null, such as initializing a field of type Foo before you can create a Foo instance (e.g., if you are
building a cyclic list). But it is also very common to have fields and variables that should never hold null
and you would like to have help from the type-checker in maintaining this invariant. Many proposals for
incorporating “can’t be null” types into programming languages have been made, but none have yet “caught
on” for Java or C#. In contrast, notice how ML uses option types for similar purposes: The types t option
and t are not the same type; you have to use NONE and SOME constructors to build a datatype where values
might or might not actually have a t value.

Function subtyping

The rules for when one function type is a subtype of another function typ are even less intuitive than the
issue of depth subtyping for records, but they are just as important for understanding how to safely override
methods in object-oriented languages (next lecture).

When we talk about function subtyping, we are talking about using a function of one type in place of a
function of another type. For example, if f takes a function g of type t1->t2, can we pass a function of type
t3->t4 instead. If t3->t4 is a subtype of t1->t2 then this is allowed because, as usual, we can pass the
function f an argument that is a subtype of the type expected. But this is not “function subtyping” on f
— it is “regular” subtyping on function arguments. The “function subtyping” is deciding that one function
type is a subtype of another.

To understand function subtyping, let’s use this example of a higher-order function, which computes the
distance between the two-dimensional point p and the result of calling f with p:

fun distMoved (f : {x:real,y:real}->{x:real,y:real},
p : {x:real,y:real}) =

let val p2 : {x:real,y:real} = f p
val dx : real = p2.x - p.x
val dy : real = p2.y - p.y

in Math.sqrt(dx*dx + dy*dy) end

The type of distMoved is

(({x:real,y:real}->{x:real,y:real}) * {x:real,y:real}) -> real

So a call to distMoved requiring no subtyping could look like this:

fun flip p = {x = ~p.x, y=~p.y}
val d = distMoved(flip, {x=3.0, y=4.0})

The call above could also pass in a record with extra fields, such as {x=3.0,y=4.0,color="green"}, but this
is just ordinary width subtyping on the second argument to distMoved. Our interest here is deciding what

6



functions with types other than {x:real,y:real}->{x:real,y:real} can be passed for the first argument
to distMoved.

First, it is safe to pass in a function with a return type that “promises” more, i.e., returns a subtype of the
needed return type for the function {x:real,y:real}. For example, it is fine for this call to type-check:

fun flipGreen p = {x = ~p.x, y=~p.y, color="green"}
val d = distMoved(flipGreen, {x=3.0, y=4.0})

The type of flipGreen is

{x:real,y:real} -> {x:real,y:real,color:string}

This is safe because distMoved expects a {x:real,y:real}->{x:real,y:real} and flipGreen is substi-
tutable for values of such a type since the fact that flipGreen returns a record that also has a color field
is not a problem.

In general, the rule here is that if ta <: tb, then t -> ta <: t -> tb, i.e., the subtype can have a return
type that is a subtype of the supertype’s return type. To introduce a little bit of jargon, we say return types
are covariant for function subtyping meaning the subtyping for the return types works “the same way” (co)
as for the types overall.

Now let us consider passing in a function with a different argument type. It turns out argument types are
NOT covariant for function subtyping. Consider this example call to distMoved:

fun flipIfGreen p = if p.color = "green"
then {x = ~p.x, y=~p.y}
else {x = p.x, y=p.y}

val d = distMoved(flipIfGreen, {x=3.0, y=4.0})

The type of flipIfGreen is

{x:real,y:real,color:string} -> {x:real,y:real}

This program should not type-check: If we run it, the expression p.color will have a “no such field” error
since the point passed to flipIfGreen does not have a color field. In short, ta <: tb, does NOT mean
ta -> t <: tb -> t. This would amount to using a function that “needs more of its argument” in place
of a function that “needs less of its argument.” This breaks the type system since the typing rules will not
require the “more stuff” to be provided.

But it turns out it works just fine to use a function that “needs less of its argument” in place of a function
that “needs more of its argument.” Consider this example use of distMoved:

fun flipX_Y0 p = {x = ~p.x, y=0.0}
val d = distMoved(flipX_Y0, {x=3.0, y=4.0})

The type of flipX_Y0 is

{x:real} -> {x:real,y:real}

since the only field the argument to flipX_Y0 needs is x. And the call to distMoved causes no problem:
distMoved will always call its f argument with a record that has an x field and a y field, which is more than
flipX_Y0 needs.

7



In general, the treatment of argument types for function subtyping is “backwards” as follows: If tb <: ta,
then ta -> t <: tb -> t. The technical jargon for “backwards” is contravariance, meaning the subtyping
for argument types is the reverse (contra) of the subtyping for the types overall.

As a final example, function subtyping can allow contravariance of arguments and covariance of results:

fun flipXMakeGreen p = {x = ~p.x, y=0.0, color="green"}
val d = distMoved(flipXMakeGreen, {x=3.0, y=4.0})

Here flipXMakeGreen has type

{x:real} -> {x:real,y:real,color:string}

This is a subtype of

{x:real,y:real} -> {x:real,y:real}

because {x:real,y:real} <: {x:real} (contravariance on arguments) and
{x:real,y:real,color:string} <: {x:real,y:real} (covariance on results).

The general rule for function subtyping is: If t3 <: t1 and t2 <: t4, then t1->t2 <: t3->t4. This rule,
combined with reflexivity (every type is a subtype of itself) lets us use contravariant arguments, covariant
results, or both.

Argument contravariance is the least intuitive concept in the course, but it is worth burning into your
memory so that you do not forget it. Many very smart people get confused because it is not about calls
to methods/functions. Rather it is about the methods/functions themselves. We do not need function
subtyping for passing non-function arguments to functions: we can just use other subtyping rules (e.g., those
for records). Function subtyping is needed for higher-order functions or for storing functions themselves in
records. And object types are related to having records with functions (methods) in them.

8


