CSE341, Fall 2011, Lecture 24 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

This lecture discusses some basic features of Racket’s module system. It is a good complement to our earlier
lecture on SML’s module system and, for this purpose, we use the same example as in that lecture: a small
library for rational numbers. This is a less inspired choice in Racket because the Racket language already
has rationals as a built-in primitive type, but the example can still serve our purposes.

A common misconception is that one needs static typing to support abstract types in a language. We show
that Racket’s structs are sufficient because they create a new dynamic type, distinct from all existing types,
and we can hide the constructor for this type from client code. In fact, we show that we can do this even
without modules (just using local scope and closures) but that modules are better style, easier to use, and
support many useful features like renaming bindings that are exported or imported. Finally we give a brief
demonstration of Racket’s contract system, which can check arbitrary properties of arguments to and results
from cross-module function calls at run-time.

Recall ML’s Modules and Our Rational-Number Example

We previously studied in ML that a module system can provide namespace management (avoiding name
conflicts for bindings in large applications), hide private bindings (allowing the module implementer to
change/remove implementation details later), and enforce invariants by using abstract types (making data
representation inaccessible to clients). In ML, we used a signature like this one to describe the interface to
a rational-number module:

sig
type rational
exception BadFrac
val make_frac : int * int -> ratiomal
val add : rational * rational -> rational
val print_rat : rational -> unit
end

The implementation of our module ensured that rationals were always printed in reduced form (e.g., 2/3
instead of 6/9). Different implementations can do so in different ways by maintaining different internal
inwvariants. For example, we can keep all values of type rational in reduced form and keep all denominators
positive.

This approach used two techniques. First, by not including bindings for private functions like gcd (for
computing the greatest common divisor) and reduce (for reducing a rational), the module does not have to
specify their behavior. Second, by making rational an abstract type, we prevent clients from creating values
of type rational on their own or inspecting their representation. This allows us to change the representation
or our internal invariants without changing the behavior of clients.

Using Racket’s struct Definitions for Abstract Types Without Modules

Before showing Racket’s module system, we show that one does not need modules to hide private bindings
— local scope and first-class functions are enough. This is not specific to Racket; we could have done the
same thing in ML. It is not great style — this is what modules are for — but it helps teach the concepts of
modularity and information hiding.

Consider this close-but-not-quite-right approach, where we omit here the full definition of the functions
defined in the letrec binding (see the code accompanying this summary for the full definitions):



(struct (rat num den)

(define rat-funs
(letrec

([gcd (lambda (x y) ...)]
[reduce (lambda (x y) ...)]
[make-frac (lambda (x y) ...)]
[add (lambda (r1 r2) ...)]
[print-rat (lambda (r) ...)]1)

(1ist make-frac add print-rat)))

(define make-frac (car rat-funs))
(define add (cadr rat-funs))
(define print-rat (caddr rat-funs))

The key binding is rat-funs, which evaluates a letrec to produce a list of functions. The five functions
bound to local variables ged, reduce, make-frac, add, and print-rat can all call each other (the purpose
of letrec) and the variables are in scope in the body of the letrec. The body just creates a list of three
closures. So after the letrec evaluates, only these three closures are directly accessible via rat-funs; the
other functions are “private” in the sense that they can only be called indirectly via the three functions
in the list, which is what we want for modularity. Since accessing these functions via list-processing is not
something clients would want to do, we bind them to top-level variables make-frac, add, and print-rat in
the last three lines. The choice of variables names in the letrec and in these lines need not have anything
to do with each other.

Unfortunately, the code above does not achieve the modularity we want. The reason is that the definition
(struct (rat num den)) is at top-level, so it is available to clients. So clients can make rationals violating
our invariants directly, such as (rat 9 6), (rat 2 -3), or (rat "hi" 0). The solution is to put the struct
definition itself in a local scope so that its functions (or at least the ones we don’t want to make available)
are not in scope for the clients. We can this as follows, by using Racket’s internal defines instead of letrec
(the meaning is the same, but letrec doesn’t allow struct definitions):

(define rat-funs
(let O
(struct (rat num den)
(define (gecd x y) ...)
(define (reduce x y) ...)
(define (make-frac x y) ...)
(define (add r1l r2) ...)
(define (print-rat r) ...)
(1ist make-frac add print-rat)))

(define make-frac (car rat-funs))
(define add (cadr rat-funs))
(define print-rat (caddr rat-funs))

Actually, it would be nice to let clients use the rat? predicate in their own code since in a dynamically typed
language it can be useful to test at run-time, “is this a rational?” We can easily do so by adding rat? to the
list of functions returned since it is in scope inside the definition of rat-funs just like all the other functions
that the struct definition introduces.

The fundamental reason this technique works is that a struct definition creates a new dynamic type. The



only way to make a rational is to use the rat constructor. The rat? predicate answers #t for values created by
this constructor and every other predicate, such as cons?, answers #£f for values created by this constructor.

If Racket did not have a way to make new dynamic types, then we could not enforce invariants and modularity.
For example, if struct was some sort of syntactic sugar for building data structures with cons cells, then
clients could use cons? to learn this and use the cons constructor to make invariant-violating rationals.

Some languages, such as Scheme, do not have a feature like struct for making new types. This non-feature
has advantages (it is possible to write code that works over all possible forms of data), but modularity is not
one of them. It also leads to the misconception that static typing is necessary for abstract types when it is
not as our example demonstrates. In a dynamically typed language, we cannot prevent clients from calling
add or print-rat with non-rationals, but any rational (as defined by rat?) will obey our invariants.

While our example made public none of the functions that the rat struct introduces (or perhaps made
public just rat?), in general we can choose to export any subset we want. For example, for a mutable struct
(Racket structs are immutable by default, but you can use the #mutable attribute to create field-mutator
functions), we might allow mutation only within a module but still make the field-accessor functions public.

Racket Modules

Basic uses of the Racket module system are straightforward. By default, each file is its own module (what
SML would call a structure) and we can use the file’s name (as a string) for the name of the module. Unlike
SML, there is no separate notion of a signature; the module itself decides what to make public. By default,
all bindings are private. A module uses the provide special form to make bindings public. For example, a
module containing an implementation of our rational numbers could include:

(provide make-frac add print-rat rat?)

For convenience, a module can have more than one use of provide. There are also several variations on how
to use provide, well explained in The Racket Guide. One form, (provide (all-provided-out)), makes
all top-level bindings in the module public. We used this feature in some earlier lectures and homeworks to
avoid interacting with the module system, but clearly from a modularity perspective it is of questionable
style if the module contains internal helper functions.

To use a module, another module uses the require form, for example:
(require "rationals.rkt")

As expected, this makes all the bindings provided by the module being required available in the module that
does the require.

Racket also provides good support for fine-grained control of namespace management. For example, the
require form has variations that import only explicitly listed bindings have other ones shadow things) or
import all bindings except some that are listed. Both provide and require also allow renaming bindings
so that different modules can refer to them with different names. For example, perhaps add inside the
rationals module would be better called rat-add externally. FEither the provide or the require could
make this change. In other languages, one might have to create a “wrapper module” with bindings like
(define rat-add add) to perform this helpful and common namespace control. All these features can help
avoid name conflicts among bindings in different modules by renaming some bindings in modules that use
them.

Contracts in Racket

Software contracts are an old idea in software development that emphasizes that what a callee expects about
its arguments and what a caller expects about a function’s result are essential for using code correctly. A key



part of specifying a module should be specifying these preconditions and postconditions for each function.
The methodology of “design-by-contract” encourages making such “contracts” a central approach to building
software.

Racket has cutting-edge support for run-time contract checking built into the language, and this support
interacts well with the module system. While you are not responsible for any details of Racket’s contract
system, it is good to see the high-level idea of what it means to do run-time contract checking.

Here are the basic concepts:

e A Racket module can provide a function binding with a contract.

e This contract uses arbitrary Racket functions to describe what “must hold” of each argument to the
function and what is “promised to hold” of any result from the function.

e When a client module calls a provided function with a contract, the contract is checked at run-time.
(Notice how this is different from static type-checking.) If an argument contract fails (return #f),
then the caller is blamed. If the argument contracts succeed (do not return #£), then the function is
called. If the result contract (run on the result of the function after it completes) fails, then the callee
is blamed, else the result is returned. As a result, both parties to the contract can assume the other
party “does what they promised to do,” knowing that a contract-violation error will occur otherwise.

e Intra-module calls do not check contracts, even for functions that are provided to other modules with
contracts. This is important for performance and is consistent with the idea of contracts: A module
internally should not need to enforce how “other code in the same file” behaves.

As an example, a file associated with this summary re-implements our rationals library with different, actually
weaker, invariants that push more work onto clients of the module:

e Clients making rational numbers must provide a positive denominator (zero was always an error, but
now so are negative denominators).

e Rationals are not kept in reduced form.

e In fact, print-rat does not even perform the convenience of reducing its argument. Instead its contract
requires that the argument is already reduced, which clients can achieve eitehr by calling reduce-rat
(now provided to clients) or by just “knowing” that the rational is in reduced form.

With this approach, there is no reason to have a separate make-frac function since we can provide the rat
constructor directly with an appropriate contract. Without further ado, here is the provide form for this
module:!

(provide (contract-out
(rat (-> integer?
(lambda (y) (and (integer? y) (> y 0)))

rat?))
(rat-num (-> rat? integer?))
(rat-den (-> rat? integer?))
(rat? (=> any/c boolean?))
(add (-> rat? rat? rat?))
(print-rat (-> reduced-rat void?))

(reduce-rat (-> rat? reduced-rat))))

IThis syntax is new to DrRacket version 5.2, which was released in late Fall 2011. If it is 2011, you likely still have version
5.1 and this code won’t work. It is easy to upgrade.



This form provides 7 bindings as you expect and the rest of the file has definitions for these functions (either
via a struct definition or via function definitions). What is new is a contract for each provided binding.
The syntax (=> el ... en) evaluates each ei to a function and that is the contract-checking function for
the corresponding argument (where the result of en is for the function result). Often, library functions like
integer? are useful; for example, we use it to reguire that all numerators are integers. Notice how the
contracts for results promise things to client modules. For example, we promise that rat-num returns an
integer. More interestingly, we promise that reduce-rat returns a value that reduced-rat “allows” (does
not return #f for).

While the syntax of -> is reminiscent of ML’s syntax for function types, the important difference is that
contracts are really “wrapper functions” that perform arbitrary checks (we can put whatever we want in a
contract) at run-time (when the function is called).

Contracts vs. Invariants

Contracts and invariants serve different purposes. Contracts check properties that other parties are supposed
to get right but might not. These are the obligations that a specification makes on a module and on its
clients. The purpose is to detect when a contract is violated and to blame the correct party. Invariants are
properties of an implementaiton that the implementation relies on for correct behavior. It is up to a module
both to maintain its own invariants and to use modularity to ensure that clients cannot cause invariants to
be violated.

In designing a specification for a module and in implementing the module, part of the design is determining
what are the external properties (that contracts can enforce) and what are the internal invariants (that mod-
ularity should hide from clients). Our example rationals module with contracts has a different specification
than our earlier rationals module, requiring more of clients (no negative denominator and calling print-rat
with a reduced argument). While this makes a nice example for defining some contracts, in this case the
earlier rationals module is probably better because it requires less of clients without making the code more
complicated or slowing down any operations.

Contracts and invariants complement each other nicely: A contract has no need to check a properly main-
tained invariant. In our example, our contracts need not check that the num and den fields of a rational value
contain integers because this follows from the contract on rat and the invariants of the module. It would
not necessarily hold if the module provided functions to mutate the fields to hold arbitrary values.



