CSE341, Fall 2011, Lecture 23 Summary

Standard Disclaimer: This lecture summary is not necessarily a complete substitute for attending class,
reading the associated code, etc. It is designed to be a useful resource for students who attended class and
are later reviewing the material.

This lecture compares procedural (functional) decomposition and object-oriented decomposition using the
classic example of implementing operations for a small expression language. It shows that the two approaches
largely lay out the same ideas in exactly opposite ways, and which way is “better” is either a matter of taste
or depends on how software might be changed or extended in the future. We then consider how both
approaches deal with operations over multiple arguments, which in many object-oriented languages requires
a technique called double (multiple) dispatch in order to stick with an object-oriented style.

The Basic Set-Up
The following problem is the canonical example of a common programming pattern, and, not coincidentally,
is a problem we have already considered a couple times in the course. Suppose we have:

e Expressions for a small “language” such as for arithmetic

e Different variants of expressions, such as integer values, negation expressions, and addition expressions

e Different operations over expressions, such as evaluating them, converting them to strings, or deter-
mining if they contain the constant zero in them

This problem leads to a conceptual matriz (two-dimensional grid) with one entry for each combination of
variant and operation:

eval | toString | hasZero

Int
Add
Negate

No matter what programming language you use or how you approach solving this programming problem,
you need to indicate what the proper behavior is for each entry in the grid. Certain approaches or languages
might make it easier to specify defaults, but you are still deciding something for every entry.

The Functional Approach

In functional languages, the standard style is to do the following:

e Define a datatype for expressions, with one constructor for each variant. (In a dynamically typed
language, we might not give the datatype a name in our program, but we are still thinking in terms of
the concept. Similarly, in a language without direct support for constructors, we might use something
like lists, but we are still thinking in terms of defining a way to construct each variant of data.)

e Define a function for each operation.

e In each function, have a branch (e.g., via pattern-matching) for each variant of data. If there is a
default for many variants, we can use something like a wildcard pattern to avoid enumerating all the
branches.

Note this approach is really just procedural decomposition: breaking the problem down into procedures
corresponding to each operation.

This ML code shows the approach for our example: Notice how we define all the kinds of data in one place
and then the nine entries in the table are implemented “by column” with one function for each column:

exception BadResult of string

datatype exp =
Int of int
| Negate of exp
| Add of exp * exp

fun eval e = (* no environment because we don’t have variables x)
case e of
Int _ => e
| Negate el => (case eval el of
Int i => Int ("i)
| _ => raise BadResult "non-int in negation")
(case (eval el, eval e2) of
(Int i, Int j) => Int (i+j)
| _ => raise BadResult "non-ints in addition")

| Add(el,e2)

I
v

fun toString e =
case e of
Int i => Int.toString i
| Negate el => "-(" ~ (toString el) ~ ")"
| Add(el,e2) => "(" ~ (toString el) ~ " + " ~ (toString e2) ~ ")"

fun hasZero e =
case e of
Int i => i=0
| Negate el => hasZero el
| Add(el,e2) => (hasZero el) orelse (hasZero e2)

The Object-Oriented Approach
In object-oriented languages, the standard style is to do the following;:
e Define a class for expressions, with one abstract method for each operation. (In a dynamically typed
language, we might not actually list the abstract methods in our program, but we are still thinking in

terms of the concept. Similarly, in a language with duck typing, we might not actually use a superclass,
but we are still thinking in terms of defining what operations we need to support.)

e Define a subclass for each variant of data.

e In each subclass, have a method definition for each operation. If there is a default for many variants,
we can use a method definition in the superclass so that via inheritance we can avoid enumerating all
the branches.

Note this approach is a data-oriented decomposition: breaking the problem down into classes corresponding
to each data variant.

This Java code! shows the approach for our example: Notice how we define all the operations in one place

IWe use the name toStrng instead of toString to avoid overriding the toString method in class Object.

(the abstract class) and then the nine entries in the table are implemented “by row” with one class for each
TOW.

abstract class Exp {
abstract Value eval();
abstract String toStrng();
abstract boolean hasZero();
}
class Int extends Exp {
public int i;
Int(int i) {
this.i = 1i;
}
Value eval() {
return this;

}

String toStrng() {
return "" + i;

}

boolean hasZero() {
return i==0;
}
}
class Negate extends Exp {
public Exp e;
Negate (Exp e) {
this.e = e;
X
Value eval() {
// we downcast from Exp to Int, which will raise a run-time error
// if the subexpression does not evaluate to an Int
return new Int(- ((Int)(e.eval())).i);
X
String toStrng() {
return "-(" + e.toStrng() + ")";
X
boolean hasZero() {
return e.hasZero();

X

}

class Add extends Exp {
Exp el;
Exp e2;

Add(Exp el, Exp e2) {
this.el = el;
this.e2 e2;

}

Value eval() {
// we downcast from Exp to Int, which will raise a run-time error
// if either subexpression does not evaluate to an Int
return new Int(((Int)(el.eval())).i + ((Int)(e2.eval())).i);

}
String toStrng() {
return "(" + el.toStrng() + " + " + e2.toStrng() + ")";

}
boolean hasZero() {

return el.hasZero() || e2.hasZero();
}

}

This Ruby code is similar, though we do not need to define abstract methods or insert type casts. (Even the
superclass is unnecessary, but we leave it in for clarity and since in more complicated examples it is a good
place to put helper methods.)

class Exp

could put default implementations or helper methods here
end
class Int < Exp

attr_reader :i

def initialize i

@i =i

end

def eval
self

end

def toString
@i.to_s

end

def hasZero
i==

end

end

class Negate < Exp
attr_reader :e
def initialize e

Qe = e
end
def eval

Int.new(-e.eval.i) # error if e.eval has no i method (not an Int)
end
def toString
"-(" + e.toString + ")"
end
def hasZero
e.hasZero
end
end
class Add < Exp
attr_reader :el, :e2
def initialize(el,e2)
Qel = el
Qe2 = e2

end
def eval
Int.new(el.eval.i + e2.eval.i) # error if el.eval or e2.eval have no i method
end
def toString
"(" + el.toString + " + " + e2.toString + ")"

end
def hasZero
el.hasZero || e2.hasZero
end
end

The Punch-Line

So we have seen that functional decomposition breaks programs down into functions that perform some
operation and object-oriented decomposition breaks programs down into classes that give behavior to some
kind of data. These are so exactly opposite that they are the same — just deciding whether to lay out our
program “by column” or “by row.” Understanding this symmetry is invaluable in conceptualizing software
or deciding how to decompose a problem. Moreover, various software tools and IDEs can help you view a
program in a different way than the source code is decomposed. For example, a tool for an OOP language
that shows you all methods foo that override some superclass’ foo is showing you a column even though
the code is organized by rows.

So, which is better? It is often a matter of personal preference whether it seems “more natural” to lay out
the concepts by row or by column, so you are entitled to your opinion. What opinion is most common can
depend on what the software is about. For our expression problem, the functional approach is probably
more popular: it is “more natural” to have the cases for eval together rather than the operations for Negate
together. For problems like implementing graphical user interfaces, the object-oriented approach is probably
more popular: it is “more natural” to have the operations for a kind of data (like a MenuBar) together (such as
backGroundColor, height, and doIfMouseIsClicked rather than have the cases for doIfMouseIsClicked
together (for MenuBar, TextBox, SliderBar, etc.). The choice can also depend on what programming
language you are using, how useful libraries are organized, etc.

Extending the Code

The choice between “rows” and “columns” becomes less subjective if we later extend our program by adding
new data variants or new operations.

Consider the functional approach. Adding a new operation is easy: we can implement a new function without
editing any existing code. For example, this function creates a new expression that evaluates to the same
result as its argument but has no negative constants:

fun noNegConstants e =
case e of
Int i => if i < 0 then Negate (Int("i)) else e
| Negate el => Negate(noNegConstants el)
| Add(el,e2) => Add(noNegConstants el, noNegConstants e2)

On the other hand, adding a new data variant, such as Mult of exp * exp is less pleasant. We need to go
back and change all our functions to add a new case. In a statically typed language, we do get some help:
after adding the Mult constructor, if our original code did not use wildcard patterns, then the type-checker
will give a non-exhaustive pattern-match warning everywhere we need to add a case for Mult.

Again the object-oriented approach is exactly the opposite. Adding a new variant is easy: we can implement a

new subclass without editing any existing code. For example, this (Java) class adds multiplication expressions
to our language:

class Mult extends Exp {
Exp el;
Exp e2;
Mult (Exp el, Exp e2) {
this.el = el;
this.e2 = e2;
}
Value eval() {
return new Int(((Int)(el.eval())).i * ((Int)(e2.eval())).i);
}
String toStrng() {
return "(" + el.toStrng() + " * " + e2.toStrng() + ")";

}
boolean hasZero() {

return el.hasZero() || e2.hasZero();
}

On the other hand, adding a new operation, such as noNegConstants, is less pleasant. We need to go back
and change all our classes to add a new method. In a statically typed language, we do get some help: after
adding the abstract method abstract Exp noNegConstants(); to the Exp class, the type-checker will give
an error for any non-abstract class that needs to implement the method.

Planning for extensibility

As seen above, functional decomposition allows new operations and object-oriented decomposition allows new
variants without modifying existing code and without explicitly planning for it — the programming styles
“Just work that way.” It is possible for functional decomposition to support new variants or object-oriented
decomposition to support new operations if you plan ahead and use somewhat awkward programming tech-
niques (that seem less awkward over time if you use them often).

We do not consider these techniques in detail here. For object-oriented programming, “the visitor pattern”
is a common approach. This pattern often is implemented using double dispatch, which is covered for other
purposes below. For functional programming, we can define our datatypes to have an “other” possibility
and our operations to take in a function that can process the “other data.” Here is the idea in SML:

datatype ’a ext_exp =

Int of int
| Negate of ’a ext_exp
| Add of ’a ext_exp * ’a ext_exp

| OtherExtExp of ’a

fun eval_ext (f,e) = (* notice we pass a function to handle extensions *)
case e of
Int i => i
| Negate el => 0 - (eval_ext (f,el))
| Add(el,e2) (eval_ext (f,el)) + (eval_ext (f,e2))
| OtherExtExp e => f e

Il
A\

With this approach, we could create an extension supporting multiplication by instantiating ’a with exp * exp,

passing eval_ext the function (fn (x,y) => eval_ext(f,el) * eval_ext(f,e2)), and using OtherExtExp(el,e2)
for multiplying el and e2. This approach can support different extensions, but it does not support well com-
bining two separately created extensions.

Notice that it does not work to wrap the original datatype in a new datatype like this:

datatype myexp_wrong =
01dExp of exp
| MyMult of myexp_wrong * myexp_wrong

This approach does not allow, for example, a subexpression of an Add to be a MyMult.
Thoughts on Extensibility

It seems clear that if you expect new operations, then a functional approach is more natural and if you
expect new data variants, then an object-oriented approach is more natural. The problems are (1) the future
is often difficult to predict; we may not know what extensions are likely, and (2) both forms of extension
may be likely. Newer languages like Scala aim to support both forms of extension well; we are still gaining
practical experience on how well it works as it is a fundamentally difficult issue.

More generally, making software that is both robust and extensible is valuable but difficult. Extensibility
can make the original code more work to develop, harder to reason about locally, and harder to change
(without breaking extensions). In fact, languages often provide constructs exactly to prevent extensibility.
ML’s modules can hide datatypes, which prevents defining new operations over them outside the module.
Java’s final modifier on a class prevents subclasses.

Binary (N-Ary) Operations and Double Dispatch

The operations we have considered so far used only one value of a type with multiple data variants: eval,
toString, hasZero, and noNegConstants all operated on one expression. When we have operations that
take two (binary) or more (n-ary) variants as arguments, we often have many more cases, and it is more
difficult in many object-oriented languages to maintain an object-oriented style.

For sake of example, suppose we add string values and rational-number values to our expression language.
Further suppose we change the meaning of Add expressions to the following:

e If the arguments are ints or rationals, do the appropriate arithmetic.

e If either argument is a string, convert the other argument to a string (unless it already is one) and
return the concatenation of the strings.

(For simplicity, the SML/Ruby/Java code associated with this summary does not change the meaning of
Negate or Mult; evaluation of these expressions raises a run-time error if either subexpression evaluates to
a value that is not an Int.)

The interesting change to the SML code is in the Add case of eval. We now have to consider 9 (i.e., 3 * 3)
subcases, one for each combination of values produced by evaluating the subexpressions. To make this
explicit and more like the object-oriented version considered below, we move these cases out into a helper
function add_values as follows:

fun eval e =
case e of

| Add(el,e2) => add_values (eval el, eval e2)

fun add_values (vi1,v2) =
case (v1,v2) of
(Int i, Int j) => Int (i+j)
| (Int i, String s) => String(Int.toString i ~ s)
| (Int i, Rational(j,k)) => Rational(i*k+j,k)
| (String s, Int i) => String(s ~ Int.toString i) (* not commutative *)
| (String s1, String s2) => String(sl " s2)
| (String s, Rational(i,j)) => String(s ~ Int.toString i ~ "/" ~ Int.toString j)
|
|
|
|

(Rational _, Int _) => add_values(v2,vl) (* commutative: avoid duplication *)
(Rational(i,j), String s) => String(Int.toString i ~ "/" ~ Int.toString j ~ s)

(Rational(a,b), Rational(c,d)) => Rational(a*d+b*c,b*d)
_ => raise BadResult "non-values passed to add_values"

Notice our functional decomposition generalizes in a straightforward way to binary (or in general, n-ary)
operations: we can use pattern-matching over tuples to enumerate all the cases.

While the number of cases may be large, that is inherent to the problem. If many cases work the same
way, we can use wildcard patterns and/or helper functions to avoid redundancy. One common source of
redundancy is commutativity, i.e., the order of values not mattering. In the example above, there is only one
such case: adding a rational and an int is the same as adding an int and a rational. Notice how we exploit
this redundancy by having one case use the other with the call add_values(v2,v1).

We now turn to supporting the same addition in an object-oriented style, as in either our Java or Ruby
code. The obvious first step is to have all the classes for values in our language, i.e., Int, Rational, and
Strng, define an add_values method that takes one argument, the “other” value to be added. Then the
eval method of the Add class would be as follows in Ruby:

def eval
el.eval.add_values e2.eval
end

In Java, for type-checking purposes, we can create an abstract class Value (since non-value expression classes
do not have an add_values method) and arrange things as follows:

abstract class Exp {
abstract Value eval();
abstract String toStrng();
abstract boolean hasZero();
}
abstract class Value extends Exp {
abstract Value add_values(Value other);
¥
class Add extends Exp {

Value eval() {
return el.eval().add_values(e2.eval());
}
}

By putting add_values methods in the Int, Strng, and Rational classes, we nicely divide our work into
three pieces using dynamic dispatch depending on the class of the object that el.eval() returns, i.e., the

receiver of the add_values call in the eval method in Add. But then each of these three needs to handle
three of the nine cases, based on the class of the second argument. One approach would be to, in these
methods, abandon object-oriented style and use run-time tests of the classes to include the three cases. The
Ruby code would look like this and the Java code would be similar using instanceof:

class Int

def add_values other
if other.is_a? Int

elsif other.is_a? Rational
else

end
end
end
class Rational

def add_values other
if other.is_a? Int

elsif other.is_a? Rational
else

end
end
end
class Strng

def add_values other
if other.is_a? Int

elsif other.is_a? Rational
else

end
end
end

While this approach works, it is really not object-oriented programming. Rather, it is a mix of object-oriented
decomposition (dynamic dispatch on the first argument) and functional decomposition (using is_a? to figure
out the cases in each method). There is not necessarily anything wrong with that: it is probably simpler to
understand than what we are about to demonstrate.

A “full” object-oriented solution would use just dynamic dispatch to choose among the nine cases, not is_a?
tests. Some languages have multimethods to support this sort of operation. A multimethod allows multiple
implementations (just like regular methods support implementations in different classes) and chooses which
method is dispatched to using the classes of multiple arguments instead of just the receiver. If we had
multimethods, we could define one called add_values, provide nine implementations, and rely on dynamic

dispatch to pick the right one.

But neither Ruby nor Java has multimethods. In such languages, there is a trick to coding up the same idea
manually. This trick is called double-dispatch when the total number of arguments is 2 (the receiver plus 1
other), like with add_values. With additional work, the technique extends to any number of arguments.

We will demonstrate double dispatch by using it to complete add_values in object-oriented style. The
relevant Ruby and Java code appears at the end. The idea is to have all our value classes implement three
more methods:

e addInt takes an argument other and produces the result of addition where the left argument is an
Int other and the right argument is self / this.

e addString takes an argument other and produces the result of addition where the left argument is a
Strng other and the right argument is self / this.

e addRational takes an argument other and produces the result of addition where the left argument is
a Rational other and the right argument is self / this.

So with three classes each implementing these three methods, we have the nine cases we need. Now we
just need to dispatch to the correct one. Our eval method in Add already does the “first dispatch” to pick
the add_values method of its receiver. We then implement these methods to do the “second dispatch” by
having add_values in Int call other.addInt self, add_values in Strng call other.addString self, and
add_values in Rational call other.addRational self.

class Int < Exp

def add_values v # first dispatch
v.addInt self
end
def addInt v # second dispatch: other is Int
Int.new(v.i + i)
end
def addString v # second dispatch: other is Strng (notice order flipped)
Strng.new(v.s + i.to_s)
end
def addRational v # second dispatch: other is Rational
Rational.new(v.i+v.j*i,v.j)
end
end
class Strng

def add_values v # first dispatch
v.addString self

end

def addInt v # second dispatch: other is Int (notice order is flipped)
Strng.new(v.i.to_s + s)

end

def addString v # second dispatch: other is Strng (notice order flipped)
Strng.new(v.s + s)

end

def addRational v # second dispatch: other is Strng (notice order flipped)
Strng.new(v.i.to_s + "/" + v.j.to_s + s)

10

end
end
class Rational < Exp

def add_values v # first dispatch
v.addRational self
end
def addInt v # second dispatch: reuse computation of commutative operation
v.addRational self
end
def addString v # second dispatch: other is Strng (notice order flipped)
Strng.new(v.s + i.to_s + "/" + j.to_s)
end
def addRational v # second dispatch: other is Strng (notice order flipped)
a,b,c,d = 1i,j,v.1i,v.j
Rational.new(a*d+b*c,b*xd)
end
end
class Add < Exp
def eval
el.eval.add_values e2.eval # start off the double-dispatch
end
end

abstract class Value extends Exp {
abstract Value add_values(Value other); // first dispatch
abstract Value addInt(Int other); // second dispatch
abstract Value addString(Strng other); // second dispatch
abstract Value addRational (Rational other); // second dispatch
}

class Int extends Value {

Value add_values(Value other) {
return other.addInt(this);

}

Value addInt(Int other) {
return new Int(other.i + i);

}

Value addString(Strng other) {
return new Strng(other.s + i);

3

Value addRational(Rational other) {
return new Rational (other.i+other.j*i,other.j);

}

}

class Strng extends Value {

Value add_values(Value other) {
return other.addString(this);

11

Value addInt(Int other) {
return new Strng("" + other.i + s);
}
Value addString(Strng other) {
return new Strng(other.s + s);
}
Value addRational(Rational other) {
return new Strng("" + other.i + "/" + other.j + s);
}
}

class Rational extends Value {

Value add_values(Value other) {
return other.addRational (this);

}

Value addInt(Int other) {
// reuse computation of commutative operation
return other.addRational (this);

}

Value addString(Strng other) {
return new Strng(other.s + i + "/" + j);

}
Value addRational(Rational other) {
int a = i;
int b = j;
int ¢ = other.i;
int d = other.j;
return new Rational (axd+b*c,b*d);
}

}
class Add extends Exp {

Value eval() {

return el.eval().add_values(e2.eval());

3

12

